

timex / sinclala $100{ }^{2 \times-89}$ PROCEAMMINE TIPS \& thicks

The software ideabook, overflowing with hints, secrets, shortcuts and techniques for using the TIMEX/Sinclair 1000 and Sinclair ZX-81 computers ...with 101 complete ready-to-run programs

 TIPS \& TRICKS

by Edward Page

ARCsoft Publishers
WOODSBORO, MARYLAND

FIRST EDITION
 FIRST PRINTING

© 1983 by ARCsoft Publishers, P.O. Box 132, Woodsboro, MD 21798 USA
Printed in the United States of America
Reproduction or publication of the contents of this book, in any manner, without express permission of the publisher, is prohibited. No liability is assumed with respect to the use of the information herein.

Library of Congress (LC) number: 82-18413
Trademark credits and software copyrights:
Sinclair ZX-81 is a trademark of Sinclair Research Lid.
Timex-Sinclair 1000 is a trademark of Timex Computer Corp. Programming advice and applications software in this book are Copyright 1983 by ARCsoft Publishers

ISBN 0-86668-020-9

Preface

The Sinclair ZX-81 and Timex/Sinclair 1000 are the most popular personal computers in the world. As of this writing more of those models have been sold than any other computer in history.

The very light weight and highly portable design of Sinclair's computer, coupled with the powerful version of the BASIC programming language it uses, have placed it at the very forefront of the new wave of computers for home, school and office.

Anything but a toy, the hardware configuration of the T/S 1000 and ZX-81, and its versatile system software, make it a highly useful tool in the business environment and the classroom as well as for practical jobs around the home.

In fact, the system software is so flexible that the need for this book became apparent. There are so many computer tasks which can be accomplished with the ZX-81 and TS/1000 that an introduction to the many techniques is needed.

Software programs are what make a computer do work for you. This book is written for those newcomers and beginners, as well as advanced novices and student programmers, who would like to tap the seeminglyunlimited resources in the T/S 1000 and ZX-81 computer package. It is hoped this book will guide and instruct and provide insights into the many ways the BASIC language in Sinclair's machine can be put to use.

This book is a companion volume to 37 TIMEX 1000/Sinclair ZX-81 Programs for Home, School \& Office.
-Edward Page

Table of Contents

Tip
Page
Introduction 11

Fun \& Games
1 Coin Toss 18
2 Traditional Dice Roll 18
3 See Two Dice 19
4 See Four Dice 20
5 Secret Messagel 21
6 Secret Message II 21
7 Up, Down, Back, Forth 22
8 Drawing Sketches 23
9 Mystery Clues 24
10 Original Hi/Lo Game 25
11 Code Groups 26
12 60-Second Timer 27
13 Find Highest/Lowest 27
14 Door Opener 28
15 Keeping Game Scores 29
16 Batting Average 30
17 Computer Rating Service 31
18 Box Score 32

Text on Text

19 Create a Quiz 36
20 Killing Time 37
21 Word-Error Trapping 37
22 Character Numbers 38
23 One-Time Password 39
24 Three-Tries Password 39
25 Multiple Passwords 40
26 Memory Review 41
27 Entering: Letter Stop 42
28 Entering: Zero Stop 42
29 Superior Decision Maker 43
30 Stopwatch 44
31 Wipeout! 45
32 Sentence Writer 46
33 Categorizing 47
34 Alphabet Soup 48
35 Letter Repeaterrrr 49
36 Question \& Answer 50
37 Gee Whiz I: Smart Adder 55
38 Gee Whiz II: Three-Digit Mystery 56
39 Gee Whiz III: Yes/No Decision Maker 56
40 Gee Whiz IV: First Alphabet Spotter 57
41 Gee Whiz V: Second Alphabet Spotter 58
42 Gee Whiz VI: Guess The Number 58
Number Chrunching
43 Memory Tester 63
44 Number Reverser I 64
45 Number Reverser II 65
46 Number-Error Trapping 65
47 Standard Deviation 66
48 Percentages 67
49 Logic Functions 68
50 Above \& Below a Line 69
51 Factoring 70
52 Which is Smallest? 71
53 Which is Largest? 72
54 Reciprocals 73
55 Dump the Integer 73
56 Averages 74
57 Mid-Range Number 74
58 Rounding Off 75
59 Two-Digit Round Off 76
60 Percent to Decimal 77
61 Every 10th Answer 77
62 Random Sampler 78
63 Random Numbers: Zero To Nine 79
64 Random Numbers: Distribution 80
65 Random Numbers: Averages 81
66 Random Numbers: Sorting High/Low 82

Money Matters

67 Money Grows 86
68 Shopper's Friend 87
69 Car Payments 89
70 To Nearest 95 Cents 90
71 To the Nearest Penny 91
72 Mark Up 92
73 Percentage Off 93
74 Dollars \& Cents 93
75 Wages \& Hours 94
76 Invoicing 95
77 Unit Price 96
78 Bubble Sort 97
79 Daily Code 98
Graphics
80 Screen Full 103
81 Sine Wave 103
82 Hold That Pose 103
83 Okay, Now Wave 104
84 Create A Table 105
85 Go To Black 106
86 Centered Message 107
87 Beautiful Braided Rug 108
88 Circling Dot 108
89 Making Things Move 108
90 Window Twinklers 109
91 Eyeball Scrambler 109
92 Flashing Dot 110
93 Snowfall 110
94 Draw A Box I 111
95 Draw A Box II 111
96 Painting Exercises 112
97 Draw A Line 112
98 Box Message 113
99 Boxed Title 114
100 Draw Bar Graphs 115
101 Random Bar Graph 117
Appendix
A BASIC Words 121
B Error Messages 125

Introduction

There is a great need for practical, useful software for the new generation of popular personal computers. The Sinclair ZX-81 and TIMEX/Sinclair 1000 computers, for example,are among the world's most popular. In fact, based on numbers sold they must be the most popular.

The T/S 1000 and the ZX-81 are the same computer, except the T/S 1000 has more built-in memory than the ZX-81. All 101 progams in this book have been written and tested on both computers and will run in the more-limited ZX-81 memory size. In other words, all of the programs in this book will run on either machine.

The T/S 1000 and the ZX-81 are powerful and versatile and flexible-but what can they do? Once you've purchased the hardware, you need down-to-earth ideas and workable programs to make the computer work for you.

The aim of this book is to provide more than 101 new and different ideas about how to use the computer and more than 101 complete, ready-to-type-and-run programs you can put to use immediately.

The 101 programs in this handbook can stand alone or be used as parts of larger sets of instructions you might write. These are designed to be typed in, just as you find them in this book, with no other programming needed.

These programs are useful in themselves. They also make good starting points for further development as you learn more about how to program your own computer and start to write more and more of your own programs. You can use these fun and practical programs and then modify them and expand them to suit your needs as they grow.

This book can be used by newcomers and beginners as well as by novices and students and more-advanced folks who are in need of new ideas. Amidst our 101 tips are many, many secrets, shortcuts, tricks, hints, techniques and make-it-easier instructions, each designed to make you a more versatile programmer and to make your programming effort lighter. Use this book to stimulate your thinking about how to approach various software problems. Use it to get good ideas for new and different approaches to all your programming goals.

We make the assumption that you know how to set up your T/S 1000 or ZX-81 (or MicroAce) for use. You know how to connect the cable between the TV switchbox and the computer. You know how to plug the power supply into a wall socket and attach the power cord to the computer. You know how to type on the flat keyboard, locate the shift key, and obtain the various "levels" of functions on the multiple-function keys. If you don't have these areas of skill down pat, yet, check your owner's manual. The Sinclair ZX-81 manual is entitled, ZX-81 BASIC Programming and is thorough. The similar publication which TIMEX ships with the T/S 1000 is the TIMEX User Manual. Please review these thoroughly as you start to use the programs in this book.

You do not have to be a programmer to use the software in this book. Just type in the programs as you find them here and run them. They will work!

A major part of your learning from this book will come as you go through the work of typing in these programs making sure you have each line typed correctly. If a
syntax error, or other error, occurs, go back and make sure your typed line matches what we have printed in this book. Our program lines are believed to be exactly correct. All have been tested on a T/S 1000 and a ZX-81 and work properly.

If, after typing in a program line as we have it, you get an error message from your computer, check the handy list of error messages in the Appendix at the rear of this book. You also will find a convenient list of BASIC words, as used in the T/S 1000 and ZX 81, in the Appendix.

If you are getting an error message, most likely you will find you have made a typographical error in typing the program into the computer. However, should you find a typo which we may have made in this book, please let the author know. Send a postcard or letter to the author in care of ARCsoff Publishers, P.O. Box 132, Woodsboro, MD 21798 USA. The author will appreciate being able to make any necessary corrections to future editions.

Home, school and office

The book has been organized into several sections plus an appendix. The first section includes tips and tricks which you may find applicable to writing and playing games with your computer.

Other sections will advance your knowledge of how the computer handles text, works with numbers, creates graphics designs on the TV screen, etc. Naturally, the sections of the book, as divided, are not rigid and exclusive. You probably will find something in the graphics section to add to a "money matters" program. Or a "text" tip could easily be applicable to a game. You might find lots of additional "gee whiz" programs in other sections of the book.

Try them all. They're great fun to run. And they are especially designed to be short so you won't have to spend hours typing in one program.

REMarks

As you read through the 101 programs in this book, you will notice few REM, or remarks, statements. The
author's training in writing BASIC-language computer programs included an emphasis on brevity and saving memory space. A sharp editing pencil was in order-and still is!

With only one to two kilobytes (1 k to $2 k$) of memory available in the ZX-81 or T/S 1000, you need to create lean programs. There is no room for fat-and this is good! Programmers who have learned on such systems will make better professionals because they know how to write efficient "code."

REMarks and explanations in software are out. Honing, fine-tuning and waste trimming are in. Use of coding form program worksheets, such as the TIMEX 1000/Sinclair ZX-81 BASIC Coding Form published by ARCsoft Publishers, is encouraged. The objective always is to make the most efficient use of available memory.

Always remember: even though they may be headed toward the same goal, no two programmers will write exactly the same list of BASIC instructions, or program lines, from scratch. As you load these 101 programs into your T/S 1000 or ZX-81 computer, one at a time, you will make modifications to suit your personal needs and interests. Exact wording of PRINT statements, for instance, can be changed. Or, two or more programs can be combined into one grand scheme. Your application may vary.

If you want to load more than one of these programs into your T/S 1000 or $\mathrm{ZX}-81$ at the same time, be sure to use different sets of line numbers for different programs. Two programs can't occupy the same set of line numbers at the same time!

ENTER vs. RETURN

Computer programmers today generally mix the two words, RETURN and ENTER, together and use them to mean the same thing. In either case, when you see RETURN or ENTER in this book, we mean the ENTER key on the right-hand side of the ZX-81 or T/S 1000 keyboard.

These programs will run on any computer which can be programmed in BASIC. However, to run on machines other than the T/S 1000 or ZX-81, you will have to make
slight modifications to program lines. Graphics commands, especially, will differ on non-Sinclair computers.

Refer to the owner's manual which came with your non-Sinclair computer and compare its version of BASIC with the Sinclair BASIC. A list of Sinclair BASIC words can be found in the Appendix at the end of this book.

Also, if you use a computer other than T/S 1000 or ZX-81, such things as line numbering, logical tests, multiplication symbols, print statements and other instructions may differ.

Report codes

Sinclair refers to its error messages as report codes. We refer to them as error messages because that's how most programmers today would refer to them. Report codes and error messages are the same thing in this book.

Many of the programs in this book will continue to run until you command them off via the BREAK key. You may stop any run, at any time, with the BREAK key at the lower right-hand side of the keyboard.

The author would like to have your suggestions for changes in future editions of this work, or for other books in this series for the TIMEXISinclair 1000 and Sinclair ZX-81 computers. He may be addressed in care of ARCsoft Publishers.

Good programming!

Fun \& Games

1 Coin Toss

Here's a handy way to settle arguments. Toss a coin. Only this time, let the computer do the work!

Type in the program. Run it. The computer will report heads or tails after each toss.

For a new toss, press any key on your computer's keyboard.

Line 20 clears the screen. A random number is generated at line 30.

Lines 60 and 70 accomplish the restart when you press any key.

Program Listing

```
10 RAND
20 CLS
30 \mathbb{EPTR}\mathbb{R}=\mathbb{RND}
40 IF R<.5 THEN PRINT mHEADS"
50 IFP R>.5 THEN PRINT mTRIILS"
```



```
70 GOTO 20
```


2 Traditional Dice Roll

Here's a simple, brief way to roll and display results for two dice.

Lines 100-110 get a random number between 1 and 6 and store it in A. Lines 200-210 get another random number from 1 to 6 and store it in B.

Lines 300-310 print the contents of A and B along with a suitable message. Lines $400-4.20$ cause the computer to await the press of any key on its keyboard. When a key is pressed, dice are rolled and new results presented on the video display.

Program Listing

10	RAND
100	$\mathbb{L E T} \mathbb{A}=\mathbb{I N T}(\mathbb{1} 0 * \mathbb{R N D})$
110	IFP $\mathbb{A}<1$ OR $\mathbb{A}>6$ THEN GOTO 100
200	$\mathbb{L E T}$
210	IF $\mathbb{B}<1$ OR $\mathbb{B}>6$ THEN GOTO 200
300	\mathbb{P} RNT m miRSTI DICE: ${ }^{\text {m }}$ "A
310	PRINT ${ }^{\text {m }}$ SECOND DICE: ${ }^{\text {m }}$ " \mathbb{B}
400	ITP ITNKEY\$=${ }^{\text {m }}$ mPHEN GOTO 400
410	CLIS
420	GOTO 100

3 See Two Dice

Here's a quick way to add real dice to any fun program you are designing for your computer.

This program rolls two dice and lets you see the results, as with real dice. This is especially useful in those games where it is important to see the value of each.

The subroutine in lines 100-140 generates the necessary pair of random numbers. Lines 60, 70 and 80 make the display you want.

Note that lines 60 and 80 each have nine asterisks. Line 150 is RETURN and must be the last line in the program.

After you type in and RUN the program, press any key on your computer's keyboard to roll the dice.

Program Listing

10 CLus
 30 IF INREY\$=m THEN GOTO 30
40 CLIS
50 GOSUB 100


```
    80 PRINTM留********m
    90 PRINT
    9 5 \text { GOTO 20}
    100 RAND
    110 \mathbb{INTP}\mp@subsup{\mathbb{IN}}{~}{=\mathbb{N}T(7*\mathbb{RND})})
    120 IF I|<1 THEN GOTO 110
    130 \mathbb{IETP}\mathbb{R}=\mathbb{INTP}(7*\mathbb{RND})
    140 I\mathbb{P}}\mathbb{R}<1 THHEN GOTO 130
    150 RETUUNN
```


4 See Four Dice

Two dice not enough for your game? Here's how to see four dice after a roll!

Naturally, this program works just like the program in tip number 3 except that the FOR/NEXT loop in lines50. 90 makes the computer roll and display four times rather than two times. If you need six, eight or ten dice on display, change the number two in line 50 to three, four or five.

Program Listing

```
    10 CL.S
    20 PRINTI"#O ROLIL 4 DICE, PRESS ANY REYM
    30 IF INREY$=m mPHEN GOTO 30
    40 CLIS
    5 0 ~ \mathbb { F O R ~ A } = \mathbb { 1 }
    55 GOSUB 100
```



```
    85 PRINIP
    90 N\mathbb{ENP}\mathbb{A}
    95 GOTO 20
100 RAND
110 INET I_=INT(7*RND)
120 IN \mathbb{N}<1 NHEN GOTO 110
130 LET\mathbb{R}=\mathbb{INTP}(7*\mathbb{RND})
```

140 I $\mathbb{R}<1$ THEN GOTO 130
150 ReTURN

5
 Secret Message ||

Secret messages can be lots of fun! They often are composed of codes in which letters of the alphabet have been replaced by numbers.

In this easy-to-use program, the computer generates a list of pseudorandom numbers and assigns one number to each letter of the alphabet. You use the numbers, in lieu of letters, to write notes to your friends.

There is very little chance of the same number being assigned to two different letters because available numbers range from zero to 999.

By the way, note the nice two-column screen printing format! Line 50 does that.

Program Listing

10 RAND
20 LIETP $\mathbb{A} \$={ }^{m} \mathbb{A} C D E P G H I J R L M N O P Q R S T U V W X Y Z{ }^{\text {M }}$
$30 \mathbb{P} O \mathbb{R} \mathbb{N}=1 \mathbb{T} \mathbf{O} 26$
40 ITET $\mathbb{C}=\mathbb{I N T}(1000 * \mathbb{R N D})$

$60 \mathbb{N} E X T \mathbb{N}$

6 secret Message II

Now here's something really different in a secret message. The computer asks you for your message, removes it from the screen, stores it, and then displays it backwards!

Yes, we said SDRAWKCAB. It's like looking through your TV tube from behind.

Make up your messages as whole sentences. For in-

stance: I WENT TO THE STORE comes out EROTS EHT OT TNEWI.

Program Listing

```
1 0 ~ C L S S
20 PRINII mNHAT IS TRHE MESSAGE ?m
30 INPUT A$
40 INTT L=L\mathbb{NN A}
5 0 ~ \mathbb { P O R } \mathbb { J } = \mathbb { L } T \mathbb { T O }
6 0 ~ P R I N T P ~ A \$ ( J ) : ~
70 NEXII J
80 PRINT
90 GOTO 20
```


7
 Up, Down, Back, Forth

"Good golly, what can't that computer do?", will be the question from your surprised neighbor when you show him this neat trick.

You type in any word. The computer instantly prints it on the video display, both up and down vertically, and backward and forward horizontally. It's great to show how smart your computer is when it comes to spelling!

Program Listing

```
    10 PRINT "GIVVE ME A WORD"
    20 INPUTP A$
    30 CL.S
    40 INET I=MEN A$
    50 PRINT mDOWN: " ""UP:*
    60 FPOR J=1 TO \mathbb{L}
    70 PRINIM AN(J), \mathbb{A}(\mathbb{INHINT)}
    80 NEXIT J
    90 PRINT
100 PRINT mPORWARD:"
110 PRINT A$
120 PRINIT
```

```
130 PRINIT mBACKWARD: m
140 FPOR J=I TO I STEP -1
150 PRINT AN(J):
160 NEXT J
170 IR INKEY$=m THHEN GOTO 170
180 CLS
190 GOTO 10
```


8
 Drawing Sketches

Now you can draw lines, rules, diagrams, maps, charts, boxes-anything you can imagine-on the face of your TV set. Use the Computer keyboard as your pen and its video output as your ink.

Lines 120 to 150 accept your up, down, right, or left commands, as U, D, R, or L. No other letters will work. Line 200 draws your lines.

Program Listing

```
10 CLs
20 INTI X=32
30 LHET Y=22
40 PLOT X, Y
100 INET \mathbb{A}=\mathbb{INREY$}
110 IR AS=mm THEN GOTO 100
120 ITP A$=WUW TRHEN LUETT Y=Y+1
```



```
140 IN \mathbb{A}$=\mp@subsup{}{}{01}\mp@subsup{\mathbb{R}}{}{[}\mathrm{ THEN INET }X=\mathbb{X}+\mathbb{1}
```



```
200 PLOT X X Y
```



```
220 GOTO 100
```


9 Mystery Clues

Want to create your own murder mystery? Figure out whodunit and write your program backwards from there. When your players make wrong guesses, give them tantalizing clues.

Here's a short program which you can load into your computer in a matter of minutes. Key it in and try it out. It shows how you can add clues to your mysteries.

For simplicity, we assume here the Butler did it. Note that, in line 20 , we are making him equal to $\mathrm{X} \$$. At line 30 , the computer stops to ask you whom you think did it. Your answer is recorded in A\$.

In line 40, your answer, lodged in A\$, is compared with the computer's already-certain knowledge that the Butler did it. A\$ is compared with $\mathrm{X} \$$. If they agree, and only if they agree, the computer displays the message, "You guessed it." If you got it right, things will end right there.

If, however, you missed it, program execution (sorry about using that word in a murder mystery!) drops to line 50 where we hear the computer, "Clue: servant." After deftly dropping that clue, the computer moves back to line 10 and runs through the whole affair another time. It will keep running through it until you answer, "Butler," in response to its question in line 30.

Program Listing

```
    10 CLSS
    20 LETT X$="BUTLER'"
    30 PRINT "WHODUNITT ?"
    35 INPUT A$
    40 IT X$=A$ THEN GOTO 100
    4 5 \text { CLS}
    50 PRINT "ClUE: SERVANT"
    60 FOR TP=1 TO 100
    70 NEXT TT
    8 0 \text { GOTO 10}
100 PRINT "YOU GUESSED IT: BUTLER"
```

110 PRINT mRESS RNY $\mathbb{R} E Y$ TO PLAY $\mathbb{A G A I N}$ 120 IF INTRY\$=m "RHEN GOTO 120 130 GOTO 10

10 Original HilLo Game

Here it is. Where everybody started in microcomputer programming back in the Seventies. The first game ever played was a high-low guess-the-number routine.

The computer selects a secret number. You'try to guess it. The computer tells you whether or not you are too high, too low, or right on the number.

Here's how it works: the secret number can be zero to 999 . Line 100 generates a random number (the secret number) and stores it. Line 210 asks you to guess the number.

Lines 300-310 decide if you are right or wrong. Line 230 keeps track of the number of attempts.

Program Listing

	$\mathbb{L T E T} \mathbb{T}=\varnothing$
20	RAND
100	$\mathbb{L C T P} \mathbb{R}=\mathbb{I N T}(1000 * \mathbb{R N D})$
200	PRINT "GUESS "HHE NUMBER ${ }^{\text {w }}$
210	$\mathbb{I N P U T} \mathbb{B}$
220	CLIS
230	L.ETT ${ }^{\text {P }}=\mathbb{T}+\mathbb{1}$
240	
300	$\underline{1}{ }^{*} \mathbb{B}>\mathbb{R}$ THHEN GOTO 400
310	
320	$\mathbb{P} \mathbb{F}^{B}=\mathbb{R}$ THEN GOTO 600
400	
410	PRINTP
420	GOTO 200
500	
510	PRINT
520	GOTO 200

620 PRINTI $\mathbb{R}^{\text {® }}$ IS ITHE $N U M B E R \mathbb{R}^{\text {º }}$

700 IF INREY\$=m THITEN GOTO 700
710 CLIEAR
720 CLIS
730 GOTO 10

11 Code Groups

Need some secret codes for your latest sensitive mission? How about sets of five random letters for use in Morse code practice?

This program has the computer generate an endless string of random combinations of five letters. It won't stop until you press the BREAK key.

Program Listing

```
    10 RAND
    20 LIET A$=mABCDESGHIJKIMINOPQRSTUVWXYYZ'm
    30 FPOR I=1 TO 5
    40 INET R=INT(100%RND)
    50 IN R<1 OR R>26 THEN GOTO 40
    6 0 ~ \mathbb { P R I N T ~ A }
    70 NEXIT I
    80 PRINII
    90 SCROLIL
100 GOTO 30
```


Sample Run

CYGQH	IDPLG	MWHOJ
XMIAJ	CTWRQ	KAFDH
BZPDO	VFEZK	BTPNC
REMSF	HALVN	QDFGN
NTVEA	NXECR	ANBWO

12
 60-Second Timer

A one-minute timer can be very handy for fun-ngames. This easy-to-use clock counts off seconds up 1060.

The number of seconds counted can be changed by changing the number 60 in line 40.

The clock can be calibrated by changing the number 6 in line 60. Line 60 is a time-delay loop set for approximately one second.

Program Listing

10	CLS
20	PRINT
30	SCROLIL
40	\mathbb{P} OR $T=1$ TO 60
50	PRINT ${ }^{\text {P }}$: ${ }^{\text {m }}$ SECONDS ${ }^{\text {m }}$
60	$\mathbb{P} O R \mathbb{L}=1$ TO 6
70	SCROIII
80	NEXTI
90	$\mathbb{N E X T P}{ }^{\text {P }}$
100	PRINT ${ }^{\text {m END }}$ OF ${ }^{\text {PIME }}$

13 Find Highest/Lowest

Suppose we have a list of people and each person has been assigned a number or score. This program accepts the scores and sorts out the persons with the highest and lowest scores. Here's how it works.

Lines $30-130$ take in the info on each person. As each person's score is entered, lines 100-120 determine if it is higher or lower than all previous scores. If higher or lower, it is so noted.

To complete data entry, simply press ENTER without data. That will prompt the computer, at lines 140 and 150, to print the lowest score and the highest score.

Program Listing

```
    10 L\mathbb{EPT}\mathbb{N}=\emptyset
    20 PRINT "SCORE:"
    30 INPUT R$
    40 IF R$=mm THEN GOTO 130
    50 PRINT R$
    60 L|ETP }\mathbb{N}=\mathbb{N}+\mathbb{1
    70 \mathbb{NTTP}\mathbb{R}=\mathbb{VA}|}\mathbb{R}
    80 I\mathbb{F}}\mathbb{N}=\mathbb{1}\mathbb{THEN}\mathbb{LETP}\mathbb{L}=\mathbb{K
    90 I\mathbb{F}}\mathbb{N}=\mathbb{1} TRHEN L\mathbb{ETP}\mathbb{H}=\mathbb{K
```



```
110 IF K
120 GOTO 20
130 PRINT
140 PRINT mLOWESTR SCORE: m"J
150 PRINTR mHIGHEST SCORE:%"H
160 IT INIREY$=m mTHEN GOTO 160
170 CLuS
180 GOTO 10
```


14 Door Opener

Any good scene needs a door. This program lets you have one to open and close. Here's how it works:

Lines 100 to 140 draw the door. Press C to close the door. Press O to open the door. Lines 300 to 390 draw the doorway outline. Lines 200-240 use INKEY\$ to allow you to open or close the door.

Program Listing

210	ITP $\mathbb{A} \$=$ m m T HeN	OTO 200
220	IF $A \$={ }^{\text {² }} \mathrm{O}^{\text {m }}$ THEN	GOTO 300
230		GOTO 100
240	GOTO 200	
300	$\mathbb{P O R} X=21$ TO 24	
310	$\mathbb{P O R} \mathrm{Y}=21 \mathrm{TO} 29$	
320	UNPLOT $\mathrm{X}_{*} \mathrm{Y}$	
330	NEXXIP Y	
340	NEXTP	
350	$\mathbb{P O R} \mathbb{Y}=21$ TO 29	
360	IPOR $X=21$ TO 24	
370	UNPLIOT $\mathbb{X}_{\theta} \mathbf{Y}$	
380	NEXTP \mathbb{X}	
390	NEXTP Y	
400	GOTO 200	

15 Keeping Game Scores

Writing a computer football game? Spelling bee? Cave adventure? No matter what kind of fun you are preparing, you'll need a way to keep score. Here's how.

The wealthy English duke has just been killed in our little mystery game. In lines 10 through 160 of our program listing, below, you play the game, attempting to find out whodunit.

The trick here is in the scorekeeping. Note line 170. If you guessed correctly in response to the queryinline160, at line170 the computer will give you credit by adding one point to your score stored in memory location R. It does that by comparing your line160 answer stored in P\$ with the correct answer stored in A\$.

If you blew it and guessed wrong, the program drops below line 170 to line 180 where it increases your "wrong score" by adding one point to W.

If you got a $\mathrm{W}+1$ at line 190, the program moves back toline 120 and gets you to try again. If you scored a victory and got an R+1 at line 170 , the program jumps to line 200 where it stops to display your total right and wrong score.

After that, it's back to line 10 for a complete new runthrough.

Program Listing

```
10 CIHEAR
15 LEET W=D
20 IH\mathbb{P}\mathbb{R}=\varnothing/
25 DIM A$(6.7)
30 DIM P$(7)
35 I.EET S=INTP(10*RND)
4 0 ~ I F ~ S < 1 ~ O R ~ S > 6 ~ T P H E N ~ G O T O ~ 3 0
60 INETP A$(1)= 'BUTILER
70 LETT A$( (2)=m NANNY 
80 LEPT {$(3)="MAID'
90 LETP A$(4)= = SONm
100 INET A$(5)= '0'COACH
110 ITETP A$(6)=mWITEN
120 PRINT "WHO RIHINED THE DURE? '0
130 PRINT WWAS IT THE.。."
140 FPOR I=1 TO 6
145 PRINT A$(I)
150 NEXT I.
160 INPUT P$
165 CLS
170 IF AN(S)=P$ THIEN GOTO 200
180 PRINT mNOT ■:P$
190 LHET W=W+1
195 GOTO 120
200 \mathbb{NET R=RNT}
210 PRINIP P$;"m DID ITT }\mp@subsup{}{}{[8
220 PRINT "YOUR SCORE IS..."
230 PRINT R:m RIGHT m;W%" WNONG
240 PRINT
250 GOTO 10
```


16 Batting Average

Once you know the number of times you were right and wrong in a game, as in Tip Number 15, it's fun to
convert those raw numbers to a batting average. Numbers right and numbers wrong take on a new meaning when changed to a batting average. Folks seem to be able to understand a batting average better.

Our program, starting at line 900, is a partial listing designed to be tacked onto the end of your longer game program to display the final results of play. It will show the number of tries, number of right answers, percentage right, and batting average.

You'll want to test load this program so add lines 10 and 800 as shown. Line 800 will give you the R and T values you'll need going into the program at line 900.

Program Listing

17
 Computer Rating Service

Of course, once you know a player's batting average it still might need some interpretation. In this program, the computer takes a look at a batting average and makes a comment.

Remember that this listing, starting here with line 800, is a partial program to be tacked on the end of a longer game. Note that, at 800 , you already have values for G (number right) and E (number of tries). Line 810 converts those raw numbers to a batting average (H).

Then, the computer takes that batting average, stored in H, and compares it with values shown in lines

830 to 870 . Depending upon the value of H, a slogan is selected by a jump to one of the lines 880 to 950.

By the way, check line 880 . You'll see a special epitaph for players with batting averages above 900.

Program Listing

```
    10 CLSS
700 I_ET G=55
710 \mathbb{IETP P=100}
800 PRINT "YOU GOT m;G;" RIGHT IN m
```



```
810 L\mathbb{ETP H}=\mathbb{INTP(1000%(G/E))})
820 PRINT "BATMING %%H
825 PRINT "YOU ARR&。."
8 3 0 ~ I R ~ H < 1 0 0 ~ T H E N ~ G O T O ~ 9 1 0 ~
840 IF H<300 THEN GOTO 920
850 IF H
8 6 0 ~ I F ~ \mathbb { H } < 7 0 0 ~ T H E N ~ G O T O ~ 9 4 0 ,
870 IF H
```



```
890 GOTO 960
910 PRINT "VERY NNEAR THEE BOTMOM OF NTHE
    BARREIL"
915 GOTO 960
920 PRINT "POOR }\mp@subsup{}{}{\mathrm{ w}
925 GOTO 960
930 PRINT "AVIERAGE "0
940 PRINT mTOP NOTCH
945 GOTO 960
950 PRINT "DAMN NEAR PERTPECT"
960 PRINT ツYOUR BATTING AVERAGE IS w:H
```


18 Box Score

To dress up scores during and at the end of a game program, use this method of putting those scores in a box. The box around the score will highlight it and jazz up your video display.

The program here has a temporary substitute for lines 10-40. Normally, you would obtain player's name and score from some larger game program you already have on hand, or are writing. Line 20 gets from you a name and stores it in N\$. Line 30 gets a score and stores it in S. If lines $50-230$ were a subroutine to a larger program, you would need a RETURN at line 110.

To try the highlighting technique, type in this program just as it is here. All of it, from line 10 through line 230, and RUN it. You'll see the name and score you give the TIMEX displayed in a box on the video screen.

Program Listing

```
    10 DIM \mathbb{A}$(10)
    20 PRINT MPINAYERS NAMME ? W
    25 INPUT NN
    30 PRINT "PLAMERS SCORE ?"
    35 INPUT S
    40 CLSS
    50 L\mathbb{ET S$=STR$(S)}
    60 ILET I_INEN(N$) +HNEN(S$)
    70 \mathbb{HETP}\mathbb{T}=\mathbb{L}+113
    80 GOSUB 200
    85 PRINT
    90 PRINT m% m;N$;mS SCORE: ";S$;m*m
100 GOSUB 200
110 PRINT
120 PRINTI
130 GOTO 20
200 \mathbb{POR }\mathbb{L}=\mathbb{1 TO T}
210 PRINTM m***
220 NHEXTM IN
230 RETPURN
```


Text On Text

19 Create a Quiz

One of the most fascinating uses for your TIMEX is in having it carry on a video conversation with your friends, relatives and neighbors. One useful way to promote such conversation is through a quiz. An instruc. tional, educational quiz, such as we have here.

Quiz data-the computer's storehouse of know. ledge-is in lines 100 to 140 . Be careful, when you type them in. Spelling and spacing must be exact.

Of course, the quiz can be made much longer. In this example, it could be expanded to encompass all past U.S. presidents.

Program Listing

```
    10 RAND
    20 DIM P$(5,10)
100 I|ET P$(1)=mWASHINGTON'
110 ITETP P$(2)="{DAMS'
120 ITET P$(3)=mJEPHERSON m
130 LETI P$(4)=mMADISON"
140 INET P$(5)=mMONROEN
200 INET R=\mathbb{NNT(6*RND)}
210 IN R<1 THEN GOTO 200
300 PRINT "WHO WAS PRESIDENT NO. W:R
310 PRINT "OF THE UNITED STATES ?"
320 INPUT A$
330 ITF A{$=m THHEN GOTO 320
340 \mathbb{ENT I}=\mathbb{LEN}\mathbb{A}$
350 CLLS
360 I\mathbb{F}}\mathbb{A}$=\mathbb{P}$(\mathbb{R}\mathbb{1}\mathbb{TO}\mathbb{L}) THHEN GOTO 500
400 PRINT "WRONG"
410 GOTO 510
500 PRINT "CORRECT "
510 PRINT P$(R):m WAS PRESIDENTT
520 PRINIT mNUMBER "o %R
530 PRINT
540 GOTO 10
```


20 Killing Time

Sometimes, it may seem to you as if the computer will never get to the result of a job. You understand the processing delay but your non-computer friends may not. They could be confused by the wait and think the computer is "broken."

To keep their minds off the slowness, give them something to look at while the computer is "thinking."

The added, extra lines, numbered 60 and 70 , take up more processing time but make for less confusion. Computing may take a bit longer but your fun will be increased.

If you delete lines $60-70$ you'll see how the program runs faster but the blank screen is confusing.

Program Listing

```
    10 LHETP X=\varnothing
    20 PRINT "GIVE MIE A NUMBERR
    30 INPUT \mathbb{N}
    40 \mathbb{POR }\mathbb{L}=\mathbb{1}\mathbb{TO}\mathbb{N}
    5 0 ~ \mathbb { L E T T } \mathbb { X } = \mathbb { X } + \mathbb { L }
    6 0 ~ C L S S
    70 PRINT "I NM TRHINRING"
    80 NEXT I.
    90 CLSS
100 PRINT wI HAVE TRHE ANSWERT
```



```
120:PRINT mPRROM 1 TRO m
130 PRINT
140 GOTO 10
```


Word-Error Trapping

The same kind of error trapping is available for strings. Suppose the program, as in this example, asks at
line 10 for a word. It is looking for YES or NO. If it gets a YES, then line 20 sees that it got what it wanted and moves operations along to line 100.

If it gets a NO, then line 20 hasn't received what it wants so program execution moves on to line 30 . Here, at line 30 , the program finds something useful and shoots operations down to line 200.

If, however, neither YES nor NO were entered at line 10, then neither lines 20 nor 30 would be satisfied so action would drop to line 40. Here, the error is trapped by commanding the operator to give one of the two correct answers. Then, at line 50, the operation is returned to line 10 for a new try at the correct input.

Program Listing

```
    5 PRINT mWANT TO PI_AY AGAIN ?"
    10 INPUT A
    20 IN AS=mYES' "IHIEN GOTO 100
    30 IF \mathbb{A}=\mp@subsup{|}{}{W}\mp@subsup{\mathbb{NO}}{}{\mathrm{ m THEN GOTO }200}
    4 0 ~ P R I N T ~ " P L E A S E E ~ A N S W E R ~ O N L Y ~ Y E S ~ O R ~ N O " ~
    5 0 ~ G O T O ~ 1 0 ~
100 PRINT A$
110 STOP
200 PRINT A$
210 STOP
```


Character Numbers

This brief program displays the value for each keyboard character, side-by-side with the character it stands for. You will be able quickly to tell what each number prints.

Line 40 is a timing loop to slow down the presentation so you can digest the information. To make it even slower, increase the number in line 40 . To make it faster, decrease the number in line 40.

```
10 FOR \mathbb{L}=\mathbb{TO}255 STEP 21
20 FOR \mathbb{N}=\mathbb{L}\mp@subsup{\mathbb{N}}{~}{TO}\mp@subsup{\mathbb{I}}{H}{+}21
30 PRINT N}\mp@subsup{\mathbb{N}}{|}{}\mathbf{CHRR$ N
40 PAUSE 60
5 0 ~ \mathbb { N E X T ~ \mathbb { N } }
6 0 ~ C L S S
70 NEXT Is
```


23
 One-Time Password

If you don't want unauthorized use of your programs, insert a requiremerit that a user know a password. This particular routine allows only one try at entering a correct password.

For our password, we have selected "elephant" and stored it in line 30. You can change the password to whatever you like.

If a correct attempt at entering the password is made, program action will progress to line 100. Otherwise, action drops to line 40 and action ends.

Program Listing

```
    10 PRINT ตWHAT IS THE PASSWORD ?"
    20 INPUT A$
    30 IF A$="ELLEPHANTM "THEN GOTO 100
    4 0 ~ S T O P ~
100 PRINT mYOU GOT IT RIGHTP
110 PRINI "A PROGRAM WOUILD RUN"
```

Three-Tries Password

Here the software lets you try three times to enter the correct password. You don't get to go forward with the
program if you don't get it right in three tries.
Again the password is "elephant" and is stored in line 30. You can change the password to whatever suits you.

Lines 40 to 60 allow the three attempts. If no good after three tries, then end.

Program Listing

5 InETI $\mathbb{B}=\varnothing$	
10	PRINT WWHAT IS THE PASSWORD ?
20	INPUT \mathbb{A} \$
30	IEP $\mathbb{A} \$={ }^{\text {m }}$ ELIPPHANT ${ }^{\text {pi }}$ "THEN GOTO 100
40	LEET $\mathbb{B}=\mathbb{B}+1$
	IFF $B=3$ THEN STOP
60	GOTO 10
100	PRINT wYOU GOT IT RIGHT ${ }^{\text {w }}$
110	PRINT ${ }^{\text {m }}$ A PROGRAM WOULD $\mathrm{RUN}^{\text {w }}$

25 Multitiple Passwords

Here's a really complex password entry system. It has a unique "account number" and a password for each person. This will allow several different persons access to the program but each person will have a different com. bination to the lock!

account	
number	password
12345	zebra
23456	goose
34567	trout
45678	snake

Each individual user must correctly enter his unique account number and then his own personal password. If account number is wrong, then the password never can be right. If account number is okay but password doesn't match, the user gets no run.

You can add users to this program by adding lines to the 300-340 subroutine.

Program Listing

10	FOR $\mathbb{I}_{s}=1$ TO 3 PRTNT ■YOUR ACCOUNTT $\mathbb{N} U M B E R$? ${ }^{\text {® }}$
30	INPUT
40	gosub 300
50	\mathbb{P} INT ${ }^{\text {m }}$ PASSWORD ? ${ }^{\text {¹ }}$
60	INPUT \mathbb{P} \$
70	IFP \mathbb{P} =W\$ THEN GOTO 100
80	$\mathbb{N E X T}$
90	STOP
100	
110	PRINT "A PROGRAM WOULOD RUN"
120	STOP
300	ITP $\mathbb{U}=12345$ THEN LETP W\$= [REBRA ${ }^{\text {m }}$
310	IFP $\mathbb{U}=23456$ THEN ILET W\$ ${ }^{\text {W }}$ GOOSE ${ }^{\text {¹ }}$
320	ITP $\mathbb{U}=34567$ WHEN IEET W\$= "TRROUTT
330	
340	RETURN

26 Memory Review

This useful program examines a range of memory locations you specify and reports what it finds there. It displays the memory location number alongside the contents, for convenience.

Program Listing

PRINT
 :"IAB 20:"CHARACTER ${ }^{\text {T }}$
110 FPOR $\mathbb{X}=\mathbb{L} \mathbb{I}^{2} \mathbf{O} \mathbb{H}$
120 LETT $\mathbb{C}=\mathbb{P E E R} \mathbb{X}$
130 PRINT X:TAB 10:C:TRA 20:CHR\$ C 140 NEXT \mathbb{X}

27
 Entering: Letter Stop

One way to conclude an input series, and get out of its entry loop, is to use a key letter to promote a jump. In this brief example, we input numbers, at line 100, as string values. If we give the computer an X rather than a number, it will jump down to line 200 for new action.

Numbers keyed in are stored first as strings. Then line 120 changes them to number values for the addition in line 130.

Program Listing

30 PRINT ${ }^{\omega} \mathbb{G} I \mathbb{E}$ ME \mathbb{A} NUMBER:
100 INPUT A
110 IP $\mathbb{A} \$={ }^{\text {W}} \mathbb{X}^{\text {m }}$ THEN GOTO 200
115 PRINT A\$
120 INT $B=\mathbb{V} \mathbb{A}$ A
130 In $\mathbb{H} \mathbb{C}=\mathbb{C}+\mathbb{B}$
140 GOTO 30
200 PRINT
210 PRINT
220 PRINT ${ }^{[T O T A L}$ OF NUMBERS $={ }^{\circ} \mathrm{C}$

28
 Entering: Zero Stop

Here's another way to conclude an entry loop: have the computer be on the lookout for a plain zero. When a
zero is entered, the computer will jump out of the entry cycle and on to further action.

This program totals numbers as they are added and accumulates them in memory location B. If one of the numbers entered is a zero alone, then line 110 will spot it and send the computer on down to line 200, breaking the entry cycle.

Naturally, you can't use a zero in a string of numbers to be added since zero causes the computer to quit entering and get on with displaying.

Program Listing

```
    10 LETT B=\emptyset
    20 PRINT "GIVE MIE A NUMBER: ";
100 INPUT A
110 ITP A=夕 THEN GOTO 200
120 PRINT A
130 LEET B}=\mathbb{B}+\mathbb{A
140 GOTO 20
200 PRINT
210 PRINT
220 PRINT "TOTAL OF NUMBERS = "'`B
```


29 Superior Decision Maker

Remember that YESINO Executive Decision Maker which was so popular? In this superior edition, a choice of eight replies is possible.

Program Listing

10	DIM $\mathbb{D} \$(8,16)$
20	RAND
100	
110	LETT $\mathbb{D} \$(2)={ }^{\text {m }}$ FIRES SOMEONE $^{\text {m }}$
120	
130	$\mathbb{I} \mathbb{E P T P}^{\text {D }}$ (4) $=$ TMAYBE ${ }^{\text {Pr }}$
140	LETT $\mathbb{D} \$(5)={ }^{\text {m }}$ REORGANIZE ${ }^{\text {m }}$
150	

$160 \mathbb{L E T} \mathbb{D} \$(7)={ }^{\text {m }}$ SEE Y OUR $\mathbb{A} N A L Y S T T^{\text {º }}$
170 LETP $\mathbb{D} \$(8)={ }^{10} S \mathbb{I T}$ ON $\mathbb{I T}{ }^{01}$
$200 \mathbb{H E T P}^{\mathbb{R}}=\mathbb{I} \mathbb{N} \mathbb{(1)}(9 * \mathbb{R N D})$
$210 \mathbb{R} \mathbb{R}<\mathbb{1}$ THEN GOTO 200
$300 \mathbb{P} \mathbb{N} T \mathbb{D} \(\mathbb{R})
400 IE INREY\$= ${ }^{m}$ m ${ }^{\text {miN }}$ GOTO 400
410 CLLS
420 GOTO 10

30 stopwatch

Now you can leave that chrome-plated stopwatch at home next time you travel to your favorite auto or horse race. This program turns your TIMEX into a handy stopwatch timer using the TV display.

When you RUN the program, the stopwatch will start counting seconds.

You can adjust the accuracy of the seconds count by changing the wait number in line 110. We show it setat 10. To show down the timer, increase that number. To speed up the clock, decrease the number.

Program Listing


```
160 PRINT S:" SECONDS HAVE ETLAPSED
170 PRINT
180 PRINTM
190 GOTO 10
```


31
 Wipeout!

Warning: handle with care!

Careless operation of this program can cause you a lot of extra work.

Key in the program. Run it. When it asks for the password, be sure to give it what it wants or it will erase itself. That's right, the entire contents of program memory down the tubes!

Here's how it works:
The password, in this case Tracey, is asked by line 20. You give it a password. In line 30, your answer is compared to the true password. If correct, action goes to line 50. If incorrect, the program goes to line 40.

The NEW statement in line 40 erases everything from program memory.

You can change the password in line 30 to any letters, numbers or keyboard symbols of your choice. Watch out when testing. A wrong password can cause a lot of retyping.

Program Listing

10 PRINT WWHAT IS THE SECRET WORD ? ${ }^{\text {W }}$
20 INPUT W\$
30 IF W\$="TRACEY" THEN GOTO 50
40 New
50 PRINT "CORRECT"
60 PRINT "THE SECRET WORD IS ":W\$

32
 Sentence Writer

Practice your English!
Exhibit your knowledge of nouns and verbs. This program leads the computer to solicit individual words from you and use those words to create sentences.

Besides helping you better understand verbs, nouns and simple declarative sentence structures, the program demonstrates the computer's ability to simulate conversation and communication.

Lines 20, 30 and 40 take in the words. Then action goes on to line 70 where the program pushes the computer back up to line 10. At line 10, everything starts over.

You may modify the program to suit your own interests or needs.

Program Listing

```
10 PRINT m}\mathbb{A}\mathbb{PLURAL}\mathbb{NOUN = ?m
20 INPUT N$
25 PRINT "M VRERB = ?m:
30 INPUT V$
35 PRINT "A SINGUTARR NOUN = ?m:
40 INPUT S$
5 0 ~ C L S S
```



```
6 5 ~ P R I N I T
70 GOTO 10
```


Sample Run

A PLURAL NOUN = ?
DOGS
A VERB = ?
LOVE
A SINGULAR NOUN = ? FOOD

THE DOGS LOVE FOOD.

A PLURAL NOUN = ?
BOXES
A VERB = ?
HOLD
A SINGULAR NOUN = ?
WATER
THE BOXES HOLD WATER

33 Categorizing

A large quantity of numbers can be categorized and thereby cut down into a smaller quantity of numbers. See our example: it takes test scores and divides them into ranges labeled A, B, C, D, and F.

The program assumes exam or test scores in a range of zero to 100 . The letter grades include zero to 59 , F; 60-69, D; 71-79, C; 80-89, B; 90-100, A.

Key in as many scores as you like and then enter the letter X to stop the entry cycle.

Lines $100-140$ sort all scores into the A through F categories. Lines 150-170 sort highest and lowest scores.

Program Listing

160	
170	
180	GOTO 20
200	
210	
220	PRINT ${ }^{\text {m }} \mathbb{A}^{\text {mi }}$, \mathbb{A}
230	PRINT ${ }^{\text {m }} \mathbb{B}^{\text {" }}{ }^{\text {a }}$ B
240	PRINT1 ${ }^{\text {m }} \mathrm{C}^{\text {w }}{ }^{\text {a }} \mathrm{C}$
250	PRINT ${ }^{\text {m }}{ }^{\text {n }}{ }^{\text {a }}$ D
260	PRINT ${ }^{\text {m }} \mathbb{F}^{\text {w }}{ }^{\text {a }} \mathbb{F}^{\text {c }}$
270	STOP
400	CLuEAR
410	L.EPT $\mathbb{A}=\varnothing$
420	$\mathbb{L E T} \quad \mathbb{B}=\emptyset$
	ITETC $C=\varnothing$
440	LETE $\mathbb{D}=\varnothing$
450	IUET $\mathbb{F}=\varnothing$
460	$\mathbb{I N P T} \quad \mathbb{N}=\emptyset$
470	REPTURN

34 Alphabet Soup

Sure, everybody knows there are 26 letters in the alphabet. But, do you know which letter is number 20? Number 5? Number 17? Well, your Computer knows!

Type in this short ready-to-run program. RUN it. The computer will spit out number-and-letter combinations all day long. The number on the left is the position in the alphabet of the letter on the right.

It's a fun way to demonstrate to your friends just how "smart" the computer is!

How does it work? The alphabet is stored, at line 20. Line 30 generates a random number. Line 40 cuts off any zeros which are generated. Now the useful random numbers range from one to 26 .

Line 60 then uses the current random number, from one to 26 , to pick one letter from the character variable $Z \$$.

Line 90 causes action to jump back to line 10 where the whole process starts over.

Program Listing

```
10 RAND
20 LETT \mathbb{Z S=MABCDEEGHIJIRIMNOPQRSTUVWXYMm}
30 I|ETM P=\mathbb{NTP}(27*\mathbb{RND})
40 IF P
60 PRINT\mathbb{P}\mathbb{Z}$(\mathbb{P})
80 SCROLLI
90 GOTO 10
```

Sample Run

			19	S	
21	U	17	Q	18	R
3	C	11	K	14	N
25	Y	8	H	20	T
6	F	10	J	5	E
2	B	7	G	19	S

35 Letter Repeaterrrr

The screen remains blank until you press any key. Then, the computer prints and repeats printing the key you pressed until a different key is pressed.

Printing and repetition of the new character starts where the previous character ended on the screen.

The 26 letters of the alphabet can be printed and repeated on the screen.

INKEY\$ makes it possible for the computer to know which keyboard character you have pressed. The problem is instructing the computer to hold and reprint that key's character while watching for any new key press. We solve that problem here by the test in line 20. The test has the computer look to see if anything is stored in A\$.

If a key has been pressed, INKEY\$ in line 10 will deposit that information in $A \$$.

Program Listing

10 ILET $\mathbb{A} \$=I N R E Y \$$
20 IF $\mathbb{A} \$=\mathrm{mm}$ THEN GOTO 10

- $)$ Quesilon as Ansuev

Here's how to use the DATA statement, and the computer's ability to, search for data, to create a Q\&A.

How many days are there in a month? It's a tough question for grade schoolers and some extra study may be in order. Use this program.

The program has the computer present the number of a month and then ask how many days are in that particular month.

If you enter a correct answer, the computer will say so. If you enter an incorrect answer, the computer will say your anwer was wrong and tell the correct answer.

The program runs on forever untilyou press the BREAK key.

Program Listing

410 INPUT \mathbb{D}
420 CLS
$430 \mathbb{I P} \mathbb{D}=\mathbb{D}(\mathbb{R}) \mathbb{T H E N} \mathbb{G O T O} 600$
500 PRINT ${ }^{(W)} \mathbb{W R O N G}^{\mathrm{m}}$
510 GOTO 610
600 PRINT ${ }^{\text {m }}$ CORRECT ${ }^{\text {n }}$
 620 PRINI
630 GOTO 10

Gee Whiz

Gee Whiz Il: Smart Adder

These six programs, in this section of the book, make up our Gee Whiz series. One of the fun ways to use your TIMEX is in wowing your friends. Next time they ask, "But, what can it do?", show them its uncanny abilities at adding, spelling, writing upside down, even cracking jokes. Try these six Gee Whiz programs on your friends. You'll love their reactions.

Smart Adder is the first in the series. When your neighbor drops in for a cup of coffee, bring out the TIMEX for a demonstration of its lightning speed.

This program adds long strings of numbers in a flash. You give the computer a number. It starts at 1 and adds all numbers up to and including your number. For instance, if you give it a five, it will add 1 plus 2 plus 3 plus 4 plus 5 and display the result.

Ask your neighbor how fast he or she can add all the numbers to 100. It should take several minutes. While he's working on it, let your TIMEX do it in a split second. Your neighbor's reaction is bound to be, "Gee whiz!"

Program Listing

38 Gee Whiz II: Three-Digit Mystery

Have your neighbor secretly select any three-digit number in which all three digits are the same. Then have him tell the computer only the sum of those three digits. The computer will identify his secret number!

Program Listing

10	CLIS
20	
30	PRINT ${ }^{\text {WITHH }}$ ALI THREE DIGITS THE
	SAMIE ${ }^{\text {a }}$
40	PRINT
50	PRINT ${ }^{(1)}$ ADD THE THREE DIGITS TOGETHER ${ }^{\text {T}}$
60	
65	PRINT ${ }^{\text {m }}$ OF THE THREE DIGITS ?
70	INPUT \mathbb{N}
75	CLIS
80	$\mathbb{M E T} Q=37 * \mathbb{N}$
90	PRINT
100	PRINII ${ }^{\text {TOUR }}$ ORIGINAL $\mathbb{N U M B E R}$ WAS ${ }^{\circ} \mathrm{Q}$
110	PRINT
120	PRINT
130	GOTO 20

39 Gee Whiz IIII: Yes/No Decision Maker

This is handy for the busy executive who doesn't have time for decisions.

Line 10 clears the screen. Line 20 generates a random number from zero to 99 . Line 30 selects a yes answer if the random number is greater than 49. Otherwise, line 40 chooses a no answer.

Program Listing

```
10 CLIS
20 IHET X=100*RND
30 INT X>49 MHEN PRINT "YESS
40 IP X<49 THEN PRINT "NO"
50 IF INREY$=m m THEN GOTO 50
6 0 ~ G O T O ~ 1 0 ~ \$
```


40 Gee Whiz IV: First Alphabet Spotter

There are 26 letters in the alphabet. Each has a number. For instance, number 1 is A. Number 20 is T. This Gee Whiz program has the computer ask you for a number from 1 to 26 and then, faster than a jackrabbit, tell you what letter it goes with.

Naturally, you'll know how it works but to your noncomputer friends it will seem like the computer is a genius!

Program Listing

```
20 PRINT wGIVE MIE THHE NUMBER OF'm
30 PRINIT m LHETTIER FFROM THE ALPHABETM
40 PRINT mIPROM 1 TO 26"
5 0 ~ I N P U T \mathbb { N }
6 0 ~ L \| E T M ~ X = N N + 3 7
70 CLSS
80 PRINT "LETTTER NUMBER m:N:" IS w %CHRS X
90 PRINT
100 GOTO 20
```


41 Gee Whiz V: Second Alphabet Spotter

This Gee Whiz program has the computer ask you for another number from 1 to 26 and then, faster than a jackrabbit, tell you what letter it goes with.

Program Listing

```
    10 CLSS
    20 CLEAR
    30 LET AS=mABCDEFGHIJTRLMNOPQRSTUVWXY%"
    40 PRINT" (GIVE ME THE NUMBER OF"
    5 0 ~ P R I N T ~ " \mathbb { A } \| \mathbb { E T T T E R ~ F P O M ~ T H E ~ A L P H A B E T P }
    60 PRINT mFROM 1 TO 26"
    70 INPUTI N
    80 CLIS
```



```
        :A$(N)
100 IF INREY$=m m THPN GOTO 100
110 GOTOO 10
```


42 Gee Whiz VI: Guess The Number

Here it is! The world's oldest, longest running, most popular game: Guess The Number.

When you start the program running, the computer thinks of a number and stores that away. You try to guess the number. If your number is too high, the computer says, "TOO HIGH."

If you are too low, the computer will report "TOO LOW." The possible numbers range from zero to 100.

Program Listing

```
    10 CLS
    20 CIIEAR
    30 LIET O$= %%M
    40 GOTO 130
    50 \mathbb{IETP N}=\mathbb{INHP(101*RND)}
    60 PRINT "GUESS TPHE NUMBER}\mp@subsup{}{}{m
    70 INPUT G
    80 IP G>N THEN PRINT mTOO HIGHW
    90 IF G<N THHEN PRINT WTOO LOWW
100 IF G<>N THEN GOTO 60
110 PRINT mRIGHT"
120 PRINT MHETS GO AGAIN'
130 \mathbb{POR I}=\mathbb{1}TO 16
140 PRINT Q$:
150 NEXXT
160 PRINT
170 GOTO 50
```


Sample Run

```
********************
GUESS THE NUMBER ?
4 6
TOO HIGH
GUESS THE NUMBER ?
2l
TOO LOW
GUESS THE NUMBER ?
25
RIGHT !
LETS GO AGAIN
********************
```


Number Crunching

43
 Memory Tester

Most everybody can remember numbers. At least short numbers with few digits. But how long a number can you recall in a flash?

The computer will briefly display a number. It then will remove the number from your view and ask you to repeat what it was. If you make a mistake in your reply, it won't show you the number again. If you miss three times, the computer will tell you to FORGET IT, give you your score and end the game. Then it will start over.

On the other hand, if you recall correctly, the computer will say so and then give you a new number. The new number will have more digits than the previous number. Each time you guess correctly, the number gets longer.

No matter how good you are, at some point you won't be able to recall all the digits in proper sequence.

By the way, if you just can't operate at the speed of this program, you can slow down the display by changing the number 100 in line 65.

How many digits can you quickly recall?

Program Listing

$120 \mathbb{I} \mathbb{E} \mathbb{R}=\mathbb{R}+\mathbb{1}$
$125 \mathbb{L E T} \mathbb{W}=\emptyset$
$130 \mathbb{L E T} \mathbb{Z}=1 \mathbb{1} * \mathbb{Z}$

140 GOTO 30

155 GOTO 10

44
 Number Reverser I

This program generates a series of random numbers and then adds them up. Then it reverses the order of the digits in the total. Creates a very strange random number!

Lines $20-40$ generate three random single-digit numbers. Line 50 is a trap to make sure they are between 1 and 9 with no zeros showing up.

Line 60 changes the number values into strings so they can be tied together as three digits at line 75. Line 85 takes those three-digit strings from line 75 and turns them back into numerical values.

Line 105 is a time delay loop to stall a moment before line 110 pushes action back up to line 10 for a new start.

Program Listing

10 CLIS
20 LETT $J=\mathbb{I N T}(10 * \mathbb{R N D})$
$30 \mathbb{L E T P} \mathbb{K}=\mathbb{I} \mathbb{N}(10 * \mathbb{R} \mathbb{N D})$
$40 \mathbb{I E T} \mathbb{L}_{0}=\mathbb{N} \mathbb{N}(10 * \mathbb{R} \mathbb{N})$)
$50 \mathbb{I P}$ J<l OR $\mathbb{K}<\mathbb{1}$ OR $\mathbb{L}<\mathbb{1}$ THEN GOTO 20
60 LETI J\$=STR\$ J
$65 \mathbb{L E T} \mathbb{K} \$=S T R \$ \mathbb{K}$
70 LeTP $\mathbb{L} \$=S T R \$ \mathbb{L}$
$75 \mathbb{L} \mathbb{E P T} \mathbb{N} \$=J \$+\mathbb{R} \$+\mathbb{I} \$$
80 I.ETP $\mathbb{R} \$=\mathbb{L} \$+\mathbb{K} \$+J \$$
$85 \mathbb{L} \mathbb{E T} \mathbb{N}=\mathbb{V} A \mathbb{L} \quad \mathbb{N} \$$
90 IEET $\mathbb{R}=\mathbb{V A} \mathbb{R}$ \$
95 PRINTE " RANDOM NUMBER IS ${ }^{m} \mathbb{N}$

105 PAUSE 200
110 GOTO 10

45 Number Reverser II

Give the computer a number. It will immediately, display the number printed backward on the video display.

Line 20 collects the number from you. Line 30 measures its length. Lines $40-70$ reverse it and line 80 displays the reversed number.

Program Listing

```
    10 LHET B$=mm
    20 PRINT "GIVE MIE A NUMBER m:
    25 INPUT\mathbb{N}$
    30 LuETM L=L\mathbb{NN N}$
    35 PRINTP N$
    40 \mathbb{POR Y=IN TO 1 STEP -1}
    50 I|ETI }\mathbb{B}$=\mathbb{B}$+\mathbb{N}$(\mathbb{Y}
    60 NEXTM Y
    70 L_ET B=VNAL}\mathbb{B}
    80 PRINT "REVERSED, THE NUMBER IS m:B
    90 PRINT
100 GOTO 10
```


46
 Number-Error Trapping

Good programs, those which are well written, need error trapping. It's a technique for making sure persons communicating with the computer don't key in inap. propriate data or make mistakes which would cause computation problems for the computer.

For instance, see the example program here. In line

10 the computer asks for a number．In line 20，if the number is too low，it says so and goes back to line 10 to repeat its request．

At line 30，if the number received at line 10 is too large，it says so and goes back to line 10 for a better choice．

The result is only printed at line 40 when a satisfac－ tory number has been keyed in back at line 10.

You can set your own limits by changing the 10 in line 20 and the 100 in line 30.

Program Listing

```
10 PRINT "GIVE ME \mathbb{A NUMMER N}
15 INPUT 哌
20 IF A<10 TPHEN PRINT "TOO HOWm
30 IF A>100 THHEN PRINT "TOO HIGHW
3 5 ~ I F ~ A < 1 0 ~ O R ~ A ~ P 1 0 0 ~ T H E N ~ G O T O ~ 1 0 , ~
40 PRINT 术:" IS ORAY'口
5 0 ~ P R I N T
60 PRINTI
70 GOTO 10
```


47 standard Deviation

Here＇s a way to determine mean and standard devia－ tion．In this particular program，you exit the entry cycle by entering the large number 999999999 （nine 9＇s）so you can＇t use 999999999 as one of your data points．

This is a great opportunity to experiment with stan－ dard deviation computations．Try a series of data points such as $3,5,3,7$ ，and 4 ．They should result in a total of 22； mean of 4．4；variance of 2.24 ；and standard deviation of 1.496663.

Program Listing

```
10 GOTO 160
20 PRINT mDATA POINT: ":
25 INPUT X
```


48 Percentages

Usually it's more convenient to enter percentages as percent rather than having to convert to decimals in your head first. Of course, the computer needs that converted decimal value to do its work. How to get it?

This program does the trick. You give it a percentage and it converts that to a decimal. The computer does the hard work for you!

Line 30 makes the actual conversion. Use this idea as part of a larger check-balancing, accounting or bookkeeping program and save lots of mental effort.

Program Listing

```
1O PRINT "WHAT IS THE PERCENTAGE ?w
20 INPUT \mathbb{P}
30 LEET D=0.01*P
40 PRINT "THE DECIMAL IS "%D
5 0 ~ P R I N T M
6 0 ~ C L E A R ~
70 GOTO 10
```


49
 Logic Functions

You can make your computer do things based on its decision that something exists. That is, in the first program listing here, it only will print the value of C if it finds that B has an existing value. If B is found to have no value, does not exist, C will not be printed.

The decision is in line 40. The machine only prints C if B does not equal zero. Since, in line 20, we set $B=10$, the computer will find that something exists in B and, thus, go ahead and do the work assigned in the last half of line 40. If nothing had been stored in B, the last half of line 40 would have been ignored.

Program Listing

```
10 CLS
20 LEET B=10
30 LEET C=10*B
40 IF B TRHEN PRINT C
```

In the second program here, the TIMEX only displays the results of the tests in lines 40 and 50 if the results of one or both is "true."

By doing the simple math in your head, you can see that the information in the right-hand side of line 20 is true. The information in the right-hand side of line 30 is false.

Line 20 says that $6+8$ is greater than 3 times 4 . That is, 14 is greater than 12. That is true.

Line 30 says that $5+2$ is greater than $9+2$. That is, 7 is greater than 11. That is false.

After reading line 20, the computer will store a 1 in B since the statement is true. Upon reading line 30, the computer will store a zero in C since the statement is false.

As action drops to line 40, the computer will find the 1 it stored in B and, thus, complete the action called for at the right-hand end of line 40. It will display the message, "B OKAY."

At line 50, however, the computer will find "nothing" (zero) in C and will not complete the right-hand end of that instruction. It only will do the right-hand end if it finds something in the left-hand end.

These logic functions are great for quick tests.

Program Listing

10 CLS
$20 \mathbb{L}$ ETP $\mathbb{B}=(6+8)>(3 * 4)$
30 LETP $C=(5+2)>(9+2)$
$40 \mathbb{I F} \mathbb{B}$ THEN $\mathbb{P} R I N T$ " ${ }^{m}$ ORAY ${ }^{m}$
50 IF C THEN PRINT ${ }^{\text {m }}$ C OKAY

50 Above \& Below a Line

Here's a way to count numbers above and below a cut-off line. The computer solicits numbers between 1 and 100. Any numbers you key in which are below 1 or above 100 are trapped out by line 40 . Entering a zero ends the input cycle.

Line 50 counts the total numbers. Line 60 counts only those numbers between 1 and 50. Line 80 counts the numbers from 51 to 100 . Lines 90 to 130 present results.

Program Listing

```
10 GOTO 160
20 PRINT "GIVEE MEE \mathbb{A NUMBER w:}
```

```
    25 INPUT Z
    30 IF Z=$ THEN GOTO 80
    3 5 ~ P R I N T ~ \mathbb { Z }
    40. IF Z<<l OR Z>100 THEN GOTO 20
    5 0 ~ \mathbb { L E T T ~ } \mathbb { N } = \mathbb { N } + \mathbb { 1 }
    60 IF Z<51 TRHEN LEET B=B+1
    70 GOTO 20
    80 LIET }\mathbb{A}=\mathbb{N}-\mathbb{B
    90 CLS
100 PRINNT mTOTALM NUMMERS: "
110 PRINT " " TO 50: "' "B
120 PRINTM m51 TRO 100: ". A
130 PRINT
160 \mathbb{EPTP}\mathbb{N}=\emptyset
170 LETT A=\varnothing
180 \mathbb{EPT}B=\emptyset
190 GOTO 20
```


51 Factoring

This program finds and lists the factors of any number you specify, up to 110 . It can be used as a subroutine in a larger program, with appropriate attention to line numbers, variable names, and RETURN.

The number of individual factors are limited by the DIM statement in line 20.

The list will exclude the number itself divided by 1.
For a quick sample run, try the number 18. You should find factors are 9,6,3 and 2. Press any key to restart.

Program Listing

```
10 GOTO 160
20 DIM Q(55)
30 PRINT " NUMBER= =
35 INPUTT N
40 PRINT N
45 \mathbb{FOR I}=2 TO N/2
```

```
    50 \mathbb{EET M}=\mathbb{N}/\mathbb{L}
    60 IN M=INT M TPHEN LUET Q(I)=M
    70 NNEXT I.
    80 PRINT mPACTORS ARE:: 
    90 FPOR \mathbb{L=l TRO N/2}
100 IF* Q(\mathbb{H})>\mathbb{1}|HEN PRINT Q(\mathbb{N})
105 IF Q(\mathbb{L})>1 THEN GOTO 120
110 I|ET Z=Z+1
120 NEXIT IL
130 IF \mathbb{N}=1 TPHEN PRINTM m NONEW
135 GOTO 145
140 IF Z=INTT N/2 THPN PRINT "NONE"
150 CLS
160 \mathbb{EPTP}\mathbb{M}=\emptyset
170 |ETP Z=\varnothing
180 GOTO 20
```


52 Which is Smallest?

How can the computer tell which number is smaller or larger? Here's how.

Type in the program and RUN it. It will ask for, and accept a continuous string of numbers until you end the input routine by keying in a zero.

Lines 40 to 60 make the decision as to which number is lowest.

Press any key to restart.

Program Listing

```
10 LEET }\mathbb{N}=
15 L|ET D=\emptyset
20 PRINT mGIVE ME \mathbb{A NUMBERR m;}
25 INPUT Z
30 IF Z=\varnothing THEN GOTO 80
35 PRINT \mathbb{Z}
40 INET NN=N}+\mathbb{1
50 IF \mathbb{N}=1 TPHEN IUETT D=Z
60 IF Z
```

70 GOTO 20
80 CLS

100 IF $\operatorname{INREYS=m~} \mathbb{T} H E \mathbb{N}$ GOTO 100
110 CLS
120 GOTO 10

53 Which is Largest?

Suppose you have a group of numbers and you would like to know which number is largest within the group? Here's a software routine for your TIMEX so it can locate the largest number.

You can key in as many numbers as you wish. To end that entry cycle, type in a zero. The computer will see that zero as its cue to leave the entering routine and get on with computing.

Press any key to restart.

Program Listing

```
    10 L\mathbb{EP N}=\varnothing
    15 \mathbb{ENT H=\emptyset}
    20 PRINT mGIVE MIE \mathbb{A NUMBER m;}
    25 INPUT Z
    30 IN W=$ THHEN GOTO }8
    35 PRINT \mathbb{Z}
    40 LHETP }\mathbb{N}=\mathbb{N}+\mathbb{1
    50 IF N=1 THHEN \mathbb{EPT}\mathbb{H}=\mathbb{Z}
    60 IF Z
    70 GOTO 20
    80 CLIS
    90 PRINT wTHE INARGESTT NUMBER: m:H
100 IF INNEY$=mm THEN GOTO 100
110 CLS
120 GOTO 10
```


Reciprocals

Key in any number. The computer will display its reciprocal. The actual conversion is done here at line 30.
Program Listing
$10 \mathbb{L E T P} \mathbb{R}=\varnothing$

25 INPUT \mathbb{N}
$30 \mathbb{L E T} \mathbb{R}=\mathbb{1} / \mathbb{N}$
35 CLis
40 PRINT mTHE RECIPROCAI OF m:N

50 PRINT
55 GOTO 10

55
 Dump the Integer

Look at the number 123.456 with an eye toward how to get rid of the portion left of the decimal point. Keep only . 456 and dump 123. Here's a short program to accomplish that.

Try 5.67. It will come out .67. Or 500.5 which will come out. 5.

Caution: your TIMEX is not always accurate at math. Try 987.65, for example. It will result in .64999986 because when the TIMEX subtracts 987 from 987.65 at line 30 it does not get .65 as the correct answer. Rather, it gets an approximate answer!

Program Listing

10 IUTI $\mathbb{X}=\varnothing$
20 PRINT "GIVE $\mathbb{M E} \mathbb{A N Y} \mathbb{N}^{(1) M B E R}{ }^{\text {T }}$
30 PRINT ${ }^{(W)}$ WTH \mathbb{A} DECIMAL.
40 INPUTI \mathbb{N}
50 LET $\mathbb{X}=\mathbb{N}-\mathbb{N} \mathbb{N}$

60 CIS
70 PRINT ${ }^{m}$ THE FRRCTIONAI PORTION ${ }^{\text {m }}$

90 PRINT
100 GOTO 10

56 Averages

Key in numbers in any order. A zero will end entry. The computer will tell you the average number of all numbers you entered.

Program Listing

```
    10 L|ET N}=
    15 IUET TH=D
    20 INETM A=\emptyset
    25 PRINT "GIVE MIE \mathbb{A NUMBER ":}
    30 INPUT \mathbb{Z}
```



```
    40 PRINT Z
    45 LEETM N}=\mathbb{N}+\mathbb{1
    50 LEET" "T=TH+Z
    6 0 ~ G O T O ~ 2 5 ~
    70 IUET\mathbb{A}=\mathbb{T}/\mathbb{N}
    80 CLSS
    90 PRINT "TPHE \mathbb{AVERAGE NUMBER IS ":乐}
100 PRINTP
110 GOTO 10
```


57
 Mid-Range Number

Here's how to find the middle of a range of numbers. You key in as many numbers in a series as you wish. After the last number, key in a zero to move the program out of the entry cycle.

Lines 40 to 70 select the highest and lowest numbers in the range. They actually define the range. Then line 90 finds the middle point of that range.

Program Listing

```
10 LNETP}\mathbb{N}=
15 I|ETM \mathbb{M}=\varnothing
20 L\mathbb{EPT }\mathbb{H}=\emptyset
25 INTT IN=\emptyset
30 PRINT mGIVE MEE A NUMBER m:
35 INPUT Z
40 IF \mathbb{Z DM MN GOTO 90}
45 PRINT Z
50 LEET }\mathbb{N}=\mathbb{N}+\mathbb{1
55 IF }\mathbb{N}=1\mathrm{ "WHEN INET H}=\mathbb{Z
60 IF N=1 THHEN \mathbb{EPT I}=\mathbb{Z}
```



```
70 IF ## PM THHEN \mathbb{ENT H=Z}
80 GOTO 30
90 LEET \mathbb{M}=\mathbb{L}+((|H-\mp@subsup{\mathbb{L}}{0}{})/2)
100 CLuS
110 PRINT mTHE MID-RANGE NUMBEER IS ":M
120 PRINT
130 GOTO 10
```


58 Rounding Off

The technique for rounding off numbers is easy. This program, which can stand alone or be worked into a larger program as a subroutine, rounds a decimal to the nearest whole number.

Program Listing

$10 \mathbb{L E T P} \mathbb{R}=\varnothing$
$15 \mathbb{L E T} \mathbb{D}=\varnothing$
20 PRINT "GIVE ME \mathbb{A} NUMBER ${ }^{\text {w }}$
$25 \mathbb{P R I N T}^{\text {"TO }}$ TO BE ROUNDED OFF"

```
    30 INPUT N
    35 IF N}\\mathbb{INT \mathbb{N "PHEN GOTO 50}
    40 HET }\mathbb{R}=\mathbb{N
    45 GOTO 100
    50 UEPT }\mathbb{D}=\mathbb{N}-\mathbb{NNT}\mathbb{N
    6 0 ~ I F ~ D > 0 . 5 ~ T H E N ~ G O T O ~ 9 0 ~
    70 \mathbb{ENTP}\mathbb{R}=\mathbb{INT}\mathbb{N}
    80 GOTO 100
    90 LLETR R
100 CLLS
110 PRINTP N:" ROUNDS OFF "TO m:R
120 PRINT
130 GOTO 10
```


59
 Two-Digit Round Off

It is possible to round off to the nearest hundrediths place. That is, to two digits after the decimal point. Here's how:

Program Listing

Percent to Decimal

Checking, interest, sales tax, and other financial programs are more "user friendly" if you don't have to make manual conversions in your head. For example, if you know your savings account earns 8 percent interest, and you need to multiply by the decimal value for 8 percent (which is 0.08), it is easier to be able to enter 8 and let the TIMEX figure out the decimal value.

Here's another way to change percentages to decimals inside a program to simplify entry by permitting percents to be entered as simple numbers.

For some examples, try entering a price of 2.50 and a sales tax percentage of 6 . Your TIMEX will find the bill totals $\$ 2.65$. Or try $\$ 7.80$ and 5 percent tax. The bill will be $\$ 8.19$. Try $\$ 123.75$ at 8 percent tax. The bill will total $\$ 133.65$.

Program Listing

61 cmommam

This program generates a random number in the range of zero to 999 . However, it has a difference. It only shows you every tenth number it generates.

Line 20 generates the numbers. Line 40 selects the tenth number from each set.

Program Listing

10 IIET $\mathbb{T}=\varnothing$
15 LIET $\mathbb{V}=\mathbb{D}$
20 LETP $\mathbb{T}=\mathbb{I N T}\left(1000^{*} \mathbb{R N D}\right)$
30 LIET $V=V+1$
40 IP $(\mathbb{V} / 10)=\mathbb{N} \mathbb{N}(\mathbb{V} / 10)$ THIRN $\operatorname{PRINT} \mathbb{V}_{\square} T$
50 GOTO 20

62 Random Sampler

This program strengthens your confidence in the random number generator built into your TIMEX computer. It generates 100 numbers between zero and 100 and tells you how many of those are above 49 and how many are below 50. See the sample RUN for several sets of results in our recent test.

Program Listing

```
10 L\mathbb{EP N}=\mathbb{N}
15 LETM X=\varnothing
20 LETP Y=ף
25 POR I=1 TO 100
30 INET X=INT(100*RND)
35 IP X<50 TPHEN I|ETP Y=Y+\mathbb{I}
40 IP X>>49 THHEN I|PTP N}=\mathbb{N}+
45 NEXII I
50 PRINII Y:m YES }\mp@subsup{}{}{m
```



```
6 0 ~ P R I N T M
6 5 ~ G O T O ~ 1 0 ~
```


Sample Run

51	YES	46	YES
49	NO	54	NO
42	YES	52	YES
58	NO	48	NO
56	YES	48	YES
44	NO	52	NO

63 Random Numbers: Zero To Nine

Although you see four program lines below, what we really have here is a very convenient single-line program for you to insert in a larger game or educational-testing program.

Line 20 is the winner here. It prints a random number from zero to nine every time. For your use here, we print that number on the screen. You could just as easily have the computer store that random number in a memory location for later recall and use.

We have added lines 10, 30 and 40 to make your TIMEX show you a whole series of random numbers from zero to nine. Remember, line 20 is the important singleline program element here.

If you would like random numbers in the range from zero to 99 , make it 100^{*} in line 20. For zero to 999 , use 1000* in line 20.

Program Listing

10 RAND
20 PRINT $\mathbb{I N T}$ (10\%RND)
30 PAUSE 100
40 GOTO 20

64

Random Numbers: Distribution

Ever wonder how "random" are the numbers generated by the random-number generator in your TIMEX when you use the RND instruction? Try this program.

It generates 100 random numbers in a range from zero to four and counts how many there are of each number between zero and four.

By the way, while it is doing that it will display the message "counting" so you can tell it is working.

At the end of its run, the TIMEX prints a neat chart, on the video display, of results. See our sample run.

Program Listing

10	Cluear
20	RAND
30	$\mathbb{L E T E T} \mathbb{N}=\emptyset$
40	UETT $\mathbb{T}=\varnothing$
50	DIM $\mathbb{A}(5)$
60	$\mathbb{F} O R \mathbb{L}_{4}=1$ TO 100
70	PRINT ${ }^{\text {W }}$ COUNTING ${ }^{\text {T }}$
80	$\mathbb{L E T} \mathbb{N}=\mathbb{I} \mathbb{N} T(5 * \mathbb{R N D})$
90	$\mathbb{1} \mathbb{N}$
100	$\mathbb{I} \mathbb{F}^{(N T}=\mathbb{1}$ THEN $\mathbb{L E T P} \mathbb{A}(2)=\mathbb{A}(2)+\mathbb{1}$
110	IF $\mathbb{N}=2$ THEN $\mathbb{H E T P} \mathbb{A}(3)=\mathbb{A}(3)+\mathbb{1}$
120	
130	IF $\mathbb{N}=4$
140	CLIS
150	NEXTI I
160	$\mathbb{F} O \mathbb{R} \quad \mathbb{L}_{\omega}=1$ TO 5
170	$\mathbb{L E T} \mathbb{T}$
180	
190	NEXT
200	PRINT ${ }^{\text {wr }}$ TOTPA山 ${ }^{\text {T }}$ 。 \mathbb{T}

Sample Run

COUNTING
0: 8
1: 10
2: 14
3: 16
4: 6
COUNT ING
0: 6
1: 12
2: 11
3: 13
4: 7

65
 Random Numbers: Averages

This program generates 100 random numbers and totals them. Then it finds the average of all 100 numbers. In fact, the average number itself is a useful new random number.

Program Listing

```
    10 ILET 哌=\varnothing
    20 L\mathbb{ET N}=\emptyset
    30 L|ET TT=\emptyset
    40 FPOR \mathbb{L}=1 THO 100
    50 PRINT "AVERAGING"
    60 LEETR }\mathbb{N}=\mathbb{INTI}(10*RND
    70 \mathbb{EETT}}\mathbb{T}=\mathbb{T}+\mathbb{N
    80 CLSS
    90 N\mathbb{EXT I}
100 LUETP A}=\mathbb{T}/10
```

110 PRINT \quad RANDOM $\mathbb{N U M B E R S}$ TOTAI $\because \llbracket$
$120 \operatorname{PRINT}{ }^{(1)} \mathbb{A} V E R A G E \mathbb{N U M B E R}$ IS : \mathbb{A}

Sample Run

AVERAGING
RANDOM NUMBERS TOTAL 444 AVERAGE NUMBER IS 4.44

AVERAGING
RANDOM NUMBERS TOTAL 424 AVERAGE NUMBER IS 4.24

66 Random Numbers: Sorting High/Low

It's important to be able to sort a group of numbers to see what the highest and lowest values are. This program does that.

The random number generator is in line 30. It gives numbers in a range of zero to 999 . Line 50 determines the lowest number in the set and line 60 finds the highest number.

Program Listing

	LETT $\mathbb{H}=\varnothing$
15	$\mathbb{L E T} \mathbb{L}^{\prime}=\emptyset$
20	$\mathbb{L} \mathbb{E T}$
25	$\mathbb{P O R} \mathbb{A}=1$ TO 100
30	$\mathbb{H E T} \mathbb{N}=\mathbb{N} \mathbb{N}(1000 * R N D)$
35	$\mathbb{I F} \mathbb{A}=1$ THEN $\mathbb{L} E T$
40	$\mathbb{1} \mathbb{A}=\mathbb{1}$ THEN $\mathbb{L E P T} \mathbb{H}=\mathbb{N}$
45	$\mathbb{P} I \mathbb{N T I}^{\text {m }}$ SORTING ${ }^{\text {º }}$
50	$\mathbb{I} \mathbb{N}^{(1) L}$
60	$\mathbb{P} \mathbb{N}>\mathbb{H}$ THEN $\mathbb{L E P T} \quad \mathbb{H}=\mathbb{N}$
70	CLSS

80 NEXT A
90 PRINT "LOW NUMBER IS ${ }^{m}$:L
100 PRINT ${ }^{(H I G H} \operatorname{NUMBER}$ IS "»H
Sample Run
SORTING
LOW NUMBER IS 32
HIGH NUMBER IS 983
LOW NUMBER IS 14
HIGH NUMBER IS 980
LOW NUMBER IS 17HIGH NUMBER IS 985
LOW NUMBER IS 9
HIGH NUMBER IS 991
LOW NUMBER IS I
HIGH NUMBER IS 994

Money Matters

67
 Money Grows

This section of the book includes a number of programs relating to household money management and to small-business applications. This first program shows you how your money grows when deposited in a savings account at a certain annual interest rate, compounded monthly.

The program will have the computer ask for the initial amount of principal saved by depositing in the account. Then the annual interest rate and the number of months to be displayed. The result of the run is a display of the changing principal as months pass and interest is added on.

Program Listing

```
    10 LHET I=\emptyset
    20 PRINTI "PRINCIPALL = $":
    30 INPUMI P
    40 PRINT\mathbb{P}
    50 PRINT "NNNUAI INTERESTT RATTE = ":
    6 0 ~ I N P U M ~ R ~
    70 PRINTM R
    80 PRINT m\mathbb{NUMBER OF* MONTHS = ":}
    90 INPUTM M
100 PRINTM M
110 FPOR Q=1 TO M
120 INET }\mathbb{I}=(\mathbb{P}*(0.01*R))/1
130 LEET P
140 PRINTI Q:m MONTH = $ "m ; P
150 NEXT Q
160 PRINTI
170 IF INREY$=m TRHEN GOTO 170
180 CLSS
190 GOTO 10
```


68 Shopper's Friend

Take your computer along the next time you go shopping!

This program finds the computer asking for certain information and then telling you which product brand name is the best buy.

The computer wil ask for the brand name of a product, the quantity in the product package, and the price of the package. Then it will ask for the name, quantity and price for a second product.

After digesting all this information, it will tell you the brand name of the best-buy product and show you the unit prices for both brand names so you can agree with the computer's judgment.

For example, suppose you were looking at corn flakes in boxes, one by Post and one by Kellogg. Suppose the Post box contained 24 ounces of flakes and was priced on the grocery shelf at $\$ 1.98$ while the Kellogg box held 18 ounces and was priced at $\$ 1.59$. Which would be the better buy based on unit price per ounce of flakes?

Run the data through your TIMEX and you'll find it computes the Post corn flakes to be the best buy with a unit price of $8 \$$ vs. the Kellogg unit price of 94.

After completing the computation, the computer asks for a yes or no answer. Do you have more to be computed?

By the way, if the unit prices turn out to be equal, the computer will say they are equal. If you want no further computations, it will say thanks and quit.

Program Listing

```
    10 PRINT "SHOPPERS FRIEND"
    20 FORR \mathbb{I}=1 TPO 15
    30 PRINT %*":
    40 NEXIT I.
    5 0 ~ P R I N T
    100 PRINT mFIRST BRAND NAME:%"
    110 INPUTM X$
    120 PRINT X$
    130 PRINT "QUANTITTY: m;
```

```
140 INPUT M
150 PRINT M
160 PRINTM mPRICE: $":
170 INPUTM N
180 PRINT N
200 PRINT "SECOND BRAND NAME:*
210 INPUT Y$
220 PRINT Y$
230 PRINNT "QUANTITP: m:
240 INPUT Q
250 PRINT Q
260 PRINT mPRICE: ":
270 INPUT R
280 PRINT R
300 IF N/MM=R/Q THEN GOTO 600
310 IF N//M<R/Q THEN GOTO 400
320 PRINT Y$:" IS BEST BUYY
3 3 0 ~ G O T O ~ 5 0 0 ~
400 PRINT X$:" IS BEST BUY'm
500 PRINT X$:"m UNIT = $m:N/M
510 PRINTT Y$:" UNTM = $"`&R/Q
520 PRINT
5 3 0 ~ S T O P
600 PRINT X$:" = "; %$
6 1 0 ~ G O T O ~ 5 0 0 ~
```


Sample Run

```
SHOPPERS FRIEND
```

```
FIRST BRAND NAME ?
```

FIRST BRAND NAME ?
POST
QUANTITY ?
24
PRICE ?
1.98
SECOND BRAND NAME ?
KELLOGS
QUANTITY ?
18
PRICE ?
1.59

```
```

POST IS BEST BUY
POST UNIT=\$0.08
KELLOGS UNIT=\$0.09

```
FIRST BRAND NAME ?
BLACKS
QUANTITY ..... ?
100
PRICE ..... ?
25
SECOND BRAND NAME ?
WHITES
QUANTITY ..... ?

50
PRICE ..... ?
12.5
BLACKS = WHITES
BLACKS UNIT=\$0.2
WHITES UNIT=\$0.25

\section*{69 Car Payments}

Shopping for a new car? Use your TIMEX Computer to compute quickly the potential monthly car payment on various models.

Imagine you want an \(\$ 8000\) car and are prepared to put up \(\$ 1000\) against the purchase. You want to arrange to finance the car for 36 months. You know the current annual interest rate on car loans is 15 percent.

Key in those few numbers and the computer instantly tells you the car payment will be \(\$ 242.66\) per month.

\section*{Program Listing}

10 IUTP \(\mathbb{P}=\varnothing\)
20 PRINT \({ }^{(C A R}\) PAYMENTP
\(30 \mathbb{F O R} \mathbb{I}=\mathbb{1} \mathbb{T} \mathbb{1}\)
\(40 \mathbb{P R}^{2} \mathbb{N T}^{\text {wim }}\)
```

 50 NEXT IH
 6 0 ~ P R I N T
 100 PRINT mPURCHASE PRICE ?m
110 INPUT TT
120 CLSS
130 PRINT mDOWN PAYMENT ?W
140 INPUT R
150 CLS
160 PRINT "NUMBER OF MONTHS ?m
170 INPUTT N
180 CLSS
190 PRINTT "ANNUAL INTEREST ?"
200 INPUT II
210 LEET I=(0.01*I)}/1
220 CLS
230 LETT P=(TT-R)*I/(\mathbb{1-1/(1+I)**N)}
240 LETT P=INTT(100*P*.5)/100
250 PRINTT "PAYMENTT WILLL BE'm
260 PRINT "\$";`P;" A MONTH"
Sample Run
********多*****
CAR PAYMENT
PURCHASE PRICE \$?
8000
DOWN PAYMENT \$?
1000
NUMBER OF MONTHS ?
36
MONTHLY INTEREST ?
15/12
PAYMENT: \$ 242.66

```

\section*{70 To Nearest 95 Cents}

Many companies like to price their goods at a figure
ending in 95 cents. For instance, a ten dollar item might be marked \(\$ 9.95\) or \(\$ 10.95\).

Here's a program which demonstrates how to make all prices come out to the nearest 95 cents. See line 40 . It merely takes the integer portion of the dollars number and adds 0.95 to it.

\section*{Program Listing}
```

10 LEETM P=\emptyset
20 PRINT MMANUPACTPURING COST:"
25 INPUT\mathbb{C}
30 PRINT "PRICING MUITTIPLIER:"
35 INPUTM 价
40 LETT P=\mathbb{NT}(C*M)+0.95
50 CLLS
60 PRINT mRETMAIL PRICE: \$m;P
70 PRINT
80 GOTO 10

```

\section*{71 To the Nearest Penny}

This program is useful when you have a dollar-andcents figure with more than two decimal places. For example, \(\$ 151.6972\). You need to transform \(\$ 151.6972\) to the more common \(\$ 151.70\)

This small program would make a good subroutine in a larger set of instructions. To do so, insert GOSUB at the appropriate place in the larger set of program lines. Modify the line numbers of this small program so the subroutine will be located in an unused position in the larger listing. Change the last line of this small program to RETURN.

\section*{Program Listing}

```

 40 PRINT mORIGINALI AMOUNT $ = m
 5 0 ~ I N P U T I ~ N N
 60 LENT R}=\mathbb{INTP}(100*\mathbb{N}+.5)/10
 7 0 \text { CLS}
 80 PRINT WTO THE NTEAREST PENNY "
 90 PRINT "$"% %N% IS $m %R
 100 PRINII
110 GOTO 10

```

\section*{72 Mark Up}

Mr. Storekeeper, here's just what you have needed to compute mark ups. This program causes your TIMEX to find the retail price for which your percentage off would give the wholesale cost.

For instance, if you got 40 percent off on an item and paid \(\$ 60\), how much was it priced at, at retail? The answer is \(\$ 100\). To put that another way, if retail price or suggested retail price is \(\$ 100\) and you got 40 percent off at wholesale, what is the wholesale price? The answer is \(\$ 60\).

Try \(\$ 40\) wholesale which is 60 percent off. The answer is \(\$ 100\) retail. Or try \(\$ 10\) wholesale at 90 percent off. Retail would be \(\$ 100\). Or \(\$ 75\) wholesale at 25 percent off gives \(\$ 100\) retail.

Here"s a toughie! Try \(\$ 19.95\) wholesale cost. Mark-up percentage is 40 . The correct retail answer is \(\$ 33.25\).

\section*{Program Listing}
```

$10 \mathrm{~K} \mathbb{E T} \mathbb{D}=\varnothing$
20 LET $\mathbb{R}=\emptyset$
30 PRINT ${ }^{\text {W }}$ WHOLIESALEE $\operatorname{COST}=\$$:
40 INPUT W
50 PRINT W

```

```

70 INPUT \mathbb{P}
80 PRINT \mathbb{P}
90 CLIS

```

\section*{73 \\ Percentage Off}

From earlier tips in this book, you know how to make your TIMEX convert percentages to decimals. But what if you want to know "percentage off?"

For example, how much is 40 percent off? This program can be used to interpret 40 percent off and compute the decimal value needed. Try 40 percent off \(\$ 100\). The computer will change 40 percent off into decimal value 0.60 . If you multiply 0.60 times \(\$ 100\) you find \(\$ 60\) is 40 per. cent off \(\$ 100\).

Line 30 makes the important translation.

\section*{Program Listing}

10 PRINT \({ }^{\text {m PERCENTAGE OFP: }}\) ":
20 INPUT \(\mathbb{P}\)
30 PRINT \(\mathbb{P}\)

50 PRINT
60 GOTO 10

\section*{74 Dollars \& Cents}

If the result of your computation is a "money" answer, and you don't know whether to display it in dollars or cents, let the computer decide.

This program decides whether to display the output in dollars or cents. Line 90 in the program makes the decision.

Program Listing
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\(10 \mathrm{H} \mathbb{E}^{\text {a }}\) T \(T=\varnothing\)} \\
\hline \multicolumn{3}{|l|}{20 PRINT "QUANTITY \(={ }^{\text {m }}\) \%} \\
\hline \multicolumn{3}{|l|}{\(30 \mathbb{I N P U T} \mathbb{P}\)} \\
\hline \multicolumn{3}{|l|}{40 PRINT \(\mathbb{P}\)} \\
\hline \multicolumn{3}{|l|}{50 PRINT \({ }^{\text {m TOPAL }}\) COST \(=\$^{\text {ai }}\)} \\
\hline \multicolumn{3}{|l|}{60 INPUT \(\mathbb{C}\)} \\
\hline \multicolumn{3}{|l|}{70 PRINT C} \\
\hline \multicolumn{3}{|l|}{\(80 \mathrm{HET} T \mathrm{P}=\mathbb{C} / \mathbb{P}\)} \\
\hline \multicolumn{3}{|l|}{90 IF \(\mathbb{T}<1\) THEN GOTO 130} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{110 PRINT} \\
\hline \multicolumn{3}{|l|}{120 GOTO 10} \\
\hline \multicolumn{3}{|l|}{130 LETP \(\mathrm{P}=100 \% \mathrm{~T}\)} \\
\hline 140 &  & CENTS \({ }^{\text {P }}\) \\
\hline 150 & PRINT & \\
\hline 160 & GOTO 10 & \\
\hline
\end{tabular}

\section*{75 Wages \& Hours}

These useful lines compute total hours worked at regular pay and number of hours worked at time-and-ahalf overtime. The computer then finds gross pay and rounds off to the nearest cent.

The program knows that overtime starts after 40 hours. It makes payroll bookkeeping quick and simple.

\section*{Program Listing}
```

10 LEET "T=\emptyset
20 I.ET W=\emptyset
30 PRINT "HOURLY PAY RATE = \$m:
40 INPUT P
5 0 ~ P R I N T ~ \mathbb { P }
60 PRINT " NUMBER HOURS WORRED = "%
7 0 ~ I N P U T P ~ H 1 ~
80 PRINTP H
90 IN H

```
```

100 IF H

```
110 LETT \(W=\mathbb{H} * \mathbb{P}\)
120 PRINT "GROSS WAGES \(=\${ }^{\text {mo }}{ }^{W}\)
130 STPP
\(140 \mathbb{L}^{\mathbb{E} T} \mathbb{W}=(40 * \mathbb{P})+(\mathbb{T} * \mathbb{P} * \mathbb{1}\) 。5)
150 GOTO 120

\section*{Sample Run}

\section*{HOURLY PAY RATE = \(\$\)}
5.75

NUMBER HOURS WORKED = 61
GROSS WAGES = \$411.125

\section*{76 Invoicing}

There's a lot of repetitious math work to be done before you mail invoices to your customers. This software has the computer collect a few pertinent bits of data from you and then present all the various totals you need to plug into an invoice.

It gives you a total retail price for all goods sold on the invoice, total sales tax if applicable, shipping charges and the grand total amount due you from your customer.

\section*{Program Listing}
```

110 INPUT H
120 PRINT H
130 LET S=0.01*S
140 LETT C=Q*P
150 LET TT=C*S
160 LEET P=C+T+H
170 LEET \mathbb{A}=\mathbb{INT(100*C++.5)/100}
180 LET B=INT(100*T+.5)/100
190 LET D=INT(100*P*.5)/100
200 CLLS
210 PRINT "TOTAL PRICE = \$";A
220 PRINT "SALES TRAX = \$"%B
230 PRINT "SHIPPING CHARGES = \$"`⿴囗⿱一一⿴囗十一
240 PRINT
250 PRINT "INVOICE TOTAL = $":D
260 IF INKEY$="m THEN GOTO 260
270 CLSS
280 GOTO 10
Sample Run
QUANTITY SOLD
178
UNIT PRICE = \$
55.98
SALES TAX RATE PERCENT =
6
SHIPPING CHARGES = \$
lOO
TOTAL PRICE = \$9964.44
SALES TAX = \$597.87
SHIPPING CHARGES = \$100
INVOICE TOTAL = \$10662.31

```

\section*{77 Unit Price}

Suppose you find 895 green Widgets and buy them for \(\$ 695\) ．How much did each green Widget cost？ Rounded off，\(\$ 7.77\) ．

Unit price is total price divided by quantity. The quantity can be expressed in weight, total numbers, etc. It works the same whether you are talking about pounds of coffee, yards of concrete, gallons of ice cream, boxes of books, or units of Widgets.

This program asks for the name of the item, quantity purchased and total price paid. It then displays quantity, name, total and unit price.

\section*{Program Listing}

10 IUET \(\mathbb{U}=\varnothing\)
20 PRINT \({ }^{m}\) ITEM \(\mathbb{N A M E}\) IS \({ }^{m}\) :
30 INPUT \(\mathbb{N} \$\)
\(40 \mathbb{P R I N T} \mathbb{N} \$\)
50 PRINT "QUANTITY OF ITEMS \(={ }^{m}\) :
60 INPUT Q
70 PRINT Q
80 PRINT " TOOTAL PRICE PAID POR ITREMS \(=\${ }^{\text {n }}\)
90 INPUT \(\mathbb{P}\)
100 PRINT \(\mathbb{P}\)
\(110 \mathbb{L E T} \mathbb{U}=\mathbb{P} / \mathbb{Q}\)


\section*{Sample Run}

ITEM NAME IS
WIDGETS
QUANTITY OF ITEMS =
999
TOTAL PRICE PAID FOR ITEMS = \$
14653
BEEP WIDGETS UNIT PRICE \(=\$ 14.667668\)

\section*{78 Bubble Sort}

Here's a handy routine, accepting lists of up to 10 names and sorting them into alphabetical order. The size of the list is controlled by the DIM instruction in line 20. You can change it.

Note that the screen goes blank while sorting is going on inside your TIMEX so you must be patient. The more names to sort, the longer it takes.

Of course, you can change names to other categories such as items, products, units, etc.

\section*{Program Listing}
```

 10 Cls
 20 DIMM M$(10;10)
 30 POR L=1 TO 10
 40 PRINTP "NAME: "'
 50 INPUT M$(L)
 6 0 ~ P R I N T ~ M \$ (L) ~
 70 NEXT IL
 80 CLS
 90 LET T=\emptyset
 100 FOR Lu=1 TO 9
110 IF M$(L)<=M$(L+1) THEN GOTO 160
120 LET E$=M$(L)
130 LET M$(L)=M$(L+\mathbb{1})
140 LET M$(L+1)=E$
150 LET T=1
160 NEXT IL
170 IF T=1 TO 10
190 IF M$(L)<>"m THEN PRINT M$(L)
200 NEXT Lu

```

\section*{79 Daily Code}

Businesses everywhere are concerned about security. Banks, credit managers, warehousemen, shipping clerks, office managers, retail storekeepers, all need private daily codes for internal use to prevent unauthorized admission to private files, storage areas, financial records.

Now you can use your computer to generate a weekly set of codes for each day. If you feel insecure about a week's list in use, the computer will give you a new set of code numbers in a flash.

The computer generates a table of randomly-selected codes for seven days at a time.

\section*{Program Listing}
```

 10 GOSUB 300
 100 PRINT "SUNDAY: "`C 110 GOSUB 300 120 PRINT "MONDAY: "':C 130 GOSUB 300 140 PRINT "TUESDAY: m:C 150 GOSUB 300 160 PRINT "WEDNESDAY: ":C 170 GOSUB }30 180 PRINT "THURSDAY: ":C 190 GOSUB 300 200 PRINT "FRIDAY: "m`C
210 GOSUB 300
220 PRINT "SATURDAY: "'C
230 STOP
300 LETT C=INT(10000*RND)
310 IF C<1000 THEN GOTO 300
320 RETURN

```

\section*{Graphics}

\section*{80 screen Full}

Fill your video screen with square dots, starting from the upper left, moving down and across to the lower right. Line 200 is a freeze frame.

\section*{Program Listing}
```

 1 0 ~ C L L S ~
 100 FPOR X=1 TPO 21 STEP 2
110 FOR Y=1 TRO 21 STEPP 2
120 PRINT AT X,Y:CHR\$ 128
130 NEXT Y
140 NEXT X
200 GOTO 200

```

\section*{81 Sine Wave}

Note that some complex screen art can be created with only a few program lines. You will want to refine these programs to make them even shorter.

\section*{Program Listing}
```

10 CLSS
20 FPOR X=1 TO 63
30 LIET Y=SIN X + 10
40 PLOT X,Y
50 NEXT X
6 0 ~ G O T O ~ 6 0 ~

```

\section*{82 Hold That Pose}

The illusion of motion is important in computer graphics. But, to make a character move, you have to draw it first!

Here we have created a friendly little stick man. But,
having created him on the graphics screen, how can we keep him there? By using a freeze frame as we have done here in line 300.

Line 300 is an endless loop, holding action at line 300 forever, until you press the break key.

Run this program first. Then, go on to Tip Number 83.

\section*{Program Listing}

\section*{10 Clus}

20 FOR X=20 TO 30
30 PLOT X. 35
40 NEXT X
50 FOR \(\mathbf{Y}=35\) TO 25 STEP -1
60 PLOT 30 . Y
70 NEXT Y
80 FOR X=30 TO 20 STEP -1
90 PLOT X. 25
100 NEXT X
110 FOR \(Y=25\) TO 35
120 PLOT 20 \# Y
130 NEXT Y
140 PLOT 22, 33
150 PLOT 28, 33
160 PLOT 25.30
170 FOR X=22 TO 28
180 PLOT X \(\mathrm{X}_{8} 27\)
190 NEXT X
200 FOR Y=25 TO 5 STEP -1
210 PLOT 25 . Y
220 NEXT \(Y\)
230 FOR \(X=20\) TO 30
240 PLOT \(\mathrm{X}_{\text {g }} 5\)
250 NEXT X
300 GOTO 300

\section*{03 Okay, Now Wave}

This is a development of the stick man drawn and frozen on the screen in Tip Number 82. Here, we add pro-
gram lines to draw and seem to move the stick man's left arm on the right side of the TV screen. The result is the appearance of arm motion. Very clever, these stick men!

\section*{Program Listing}
```

 10 CHS
 20 FOR X=20 TO 30
 30 FPOR Y=5 TO 35 STEPP 10
 40 PLOTT X,Y
 5 0 ~ N H E X T ~ Y ~
 60 NEXTM X
 70 FOR Y=25 TO 35
 80 FPOR X=20 TO 30 STEP 10
 90 PLOTT X|Y
 100 NEXT X
110 NEXT Y
120 PLOT 22.33
130 PLOT 28,33
140 PLOT 25,30
150 FFOR X=22 TO 28
160 PLOT \mathbb{E}}2
170 NEXT X
180 FPOR Y=5 TOO 25
190 PLOT 25.Y
200 NEXTT Y
210 FOOR X=30 IPO 26 STEP -\mathbb{R}
220 UNPLOTM X:15
230 NEXTI X
240 PAUSE 60
250 FOR X=26 TO 30
260 PLOT X K
270 NEXIT X
2 8 0 ~ P A U S E ~ 6 0 ~
290 GOTO 210

```

\section*{84 Create A Table}

This program generates a table of values, as a
demonstration on how to set up a table on the video display.

Subroutine lines 900 and 910 generate random numbers in the range of zero to 99 . Lines 60 and 70 find how many times through the random number generator it takes to get a number greater than 50 . The answer is stored in \(A\).

Lines 90and 100 do it again and store the answer in B.

Line 40 prints the table heading and line 110 displays the results.

\section*{Program Listing}
```

 5 RAND
 10 LeTP A=ø
 20 LET \(\mathbb{B}=\varnothing\)
 \(30 \mathrm{LE} \mathbb{T} \mathbb{T}=\rrbracket\)
 40 PRINT CHR\$ 166,CHR\$ 167
 50 GOSUB 900
 60 IF \(X>50\) THEN IUET \(\mathbb{A}=\mathbb{A}+1\)
 70 IF X>50 THEN GOTO 50
 80 GOSUB 900
 90 IF \(X>50\) THEN IETR \(B=B+1\)
 100 IF $X>50$ THIEN GOTO 80
110 PRINT" $\mathbb{A}^{\circ} B$
$120 \mathbb{I F} \mathbb{T}=10$ THEN $\mathbb{S T O P}$
130 LETT $A=\varnothing$
$140 \mathrm{LET} \mathrm{T}=\varnothing$
$150 \mathbb{H E T} \mathbb{T}=\mathbb{T}+\mathbb{1}$
160 GOTO 20
$900 \mathbb{L E T P} \mathbb{X}=\mathbb{I N T}(100 * \mathbb{R N D})$
910 RETURN

```

\section*{85 Go тo Black}

There are ways to black-out your screen without going to the graphics mode. Line 150 is a freeze-frame.

\section*{Program Listing}

10 CLS
100 FOR \(\mathbb{L}=\varnothing\) TO 21
110 FOR C=ø TO 31
120 PRINT \(\mathbb{A T} \mathrm{L}_{\mathrm{A}} \mathrm{C}: \mathrm{CHR} \$ 128\)
130 NEXT C
140 NEXT \(\mathbb{I}\)
150 GOTO 150

\section*{86 Centered Message}

Think up a message of up to 20 characters and spaces. Type it into your TIMEX in response to the request here at line 110.

The computer will highlight your message by centering it on the video screen.

Use this handy centering program for titles and other important parts of longer programs. It makes a good subroutine.

\section*{Program Listing}
```

 10 LETI A
 100 PRINT mMESSAGE:"
110 INPUTP M\$
200 LETT \mathbb{L=LEN M\$}

```

```

220 \mathbb{FOR Z=1 "TO m}
230 L|ETT AS=\mathbb{A}\$\mp@subsup{H}{}{(0%0}
240 NEXTP}\mathbb{Z
250 J|ET P
260 CLLS

300 PRINT TRAB P:A\$\$
310 PRINT TRAB P;"\# woM$;"m*m
320 PRINT TAB P;A$
```

## 87 Beautiful Braided Rug

Just goes to show that some of the most attractive computer graphics require some of the shortest programs.

## Program Listing

10 FOR $X=1$ TO 20 STEP 2
20 FOR $Y=1$ TO 20 STEP 2
30 PRINT $\mathbb{A} T \mathbb{X}_{0} Y: C H R \$ 8$
$40 \mathbb{P R I N T} \mathbb{A} \mathbb{X}+\mathbb{1}_{\boldsymbol{\prime}} \mathbb{Y}+\mathbb{1}: C H R \$ 128$
50 NEXT $\mathbb{Y}$
60 NEXT X

## 88 Circling Dot

More round graphics on your rectangular picture tube.

## Program Listing

```
10 CLSS
20 \mathbb{POR N=1 TRO 12}
30 LET X=20-(10* COS (N/6*PIN))
40 LEET Y=10+(10*SIN(N/\sigma*PI))
50 PLOT X X Y
60 NEXT N
70 GOTO 20
```


## 89 <br> Making Things Move

Movement on the computer display screen is an illusion. As in any television picture, the turning on and turning off of dots in a pattern across a screen can seem to provide motion to an object drawn on the face of the tube.

There are a number of ways to get the look of motion. Let's send a dot across the screen:

## Program Listing

10 FrOR $\mathbb{X}=\emptyset$ "IO 63
20 PLOT $\mathbb{X}, 20+S I \mathbb{N} \mathbb{X}$
30 UNPLOT $X-1,20+S I N(X-1)$
40 NEXT X
50 FPOR $\mathbb{X}=62$ TO § STEP - 1
60 PLOT X, $20+S I \mathbb{N} \mathbb{X}$
70 UNPI_OTI $X+1,20+S I N(X+1)$
80 NEXT $\mathbb{X}$
90 GOTO 10

## 90 Window Twinklers

Well, what would you call them?

## Program Listing

```
10 CLlS
20 RAND
100 L\mathbb{ETP X=INT(63*RND)}
110 LEET Y=\mathbb{NTP(43*RND)}
120 PLOT X,Y
130 GOTO 100
```


## 91 Eyeball Scrambler

Blink. Blink. Blink. It's enough to make your eyeballs hurt!

The screen is filled with all the many printable keyboard characters. Some flash on and off. Some do not. Creates a very lively display!

## Program Listing

$10 \operatorname{LET} X=\mathbb{I N T}(30 * \mathbb{R N D})$
$20 \operatorname{LEET} \mathbb{Y}=\mathbb{I N T}(20 * \mathbb{R N D})$
$30 \operatorname{LET} \mathbb{C}=\mathbb{I N} \mathbb{N}^{(256 * R N D)}$

50 GOTO 10

## 92 Flashing Dot

Want a blinking dot in the upper left-hand corner of the screen? You've got it!

This program clears the screen and causes that dot to blink. Timing loops in lines 20 and 40 control the length of time the dot is on and off.

See ASCII number list for other characters to display as a dot. We use 128.

## Program Listing

## 10 CLs

20 PAUSE 20
30 PRINT $\mathbb{A T} 0_{0} 0: C H R \$ 128$
40 PAUSE 40
50 GOTO 10

## 93 Snowfall

White flakes sprinkle down the screen, over and over-until you press the BREAK key. It may be useless but it's a lot of fun to watch!

## Program Listing

100 FOR $\mathbb{X}=\emptyset$ TO 63
110 FPOR $Y=10$ TO 43
120 PLOT $X_{0} \mathbf{Y}$
130 NEXT Y

```
140 NEXT X
200 \mathbb{ETP X=INT(63*RND)}
210 \mathbb{LETP Y=INT(43*RND)}
220 IF Y<10 THEN GOTO 210
230 UNPPLOT X, Y
2 4 0 ~ G O T O ~ 2 0 0 ~
```


## 94 Draw A Box

Now you know how to draw a box!
Program Listing

```
 10 CLLS
 20 FPOR \mathbb{X=20 TO 30}
 30 PLOT X, 35
 40 NEXT X
 50 \mathbb{FOR Y=35 TOO 25 STEP -\mathbb{1}}\mathbf{T}=0
 60 PLOT 30"Y
 70 NEXT Y
 80 FPOR X=30 "TO 20 STEP -1
 90 PLOT X,25
100 NEXTM X
110 FPOR Y=25 TO 35
120 PLOT 20.Y
130 NEXT Y
```


## 95 Draw A Box II

Lines 100 to 240 draw abox. Line 300 is a freezeframe device.

## Program Listing

```
 10 CLSS
100 FFOR Y=10 TO 43 STEP 33
110 FPOR X=\varnothing TO 63
120 PLOT X,Y
```

$130 \mathbb{N E X T}^{\mathbb{X}}$
140 NEXT $\mathbb{Y}$
200 FOR $\mathbb{X}=\emptyset$ TO 63 STHEP 63
210 POR $Y=10$ TO 43
220 PLOT $X_{\theta} Y$
230 NEXT Y
240 NEXT $\mathbb{X}$
300 GOTO 300

## 96 Painting Exercises

Just goes to show that some of the most attractive computer graphics require some of the shortest programs.

## Program Listing

```
 10 CLS
 20 RAND
100 \mathbb{EPT}\mathbb{W}=\mathbb{NNT(63*RND)}
110 \mathbb{LETP}\mathbb{X}=\mathbb{NNIT(63*RND)}
120 L\mathbb{ETP Y=INT(4.3*RND)}
130 \mathbb{EETP}\mathbb{Z}=\mathbb{INT(43*RND)}
140 \mathbb{POR \mathbb{N}=W TO X}
150 \mathbb{POR R}=\mathbb{Y}\mathbb{T}\mathbb{Z}\mathbb{Z}
160 PHOTP I|, R
170 NEXTM R
180 NNEXT I
200 GOTO 100
```


## 97 Draw A Line

There are different ways to draw a line on the Computer screen.

## Program Listing

```
10 LEET A$=""
20 FOR L=1 TM 30
30 LETP AS=A$+"**
40 NEXT L.
50 PRINT A$
```


## Program Listing

10 FOR $\mathbb{L}=1$ TO 30
20 PRINT CHR\$ 128
30 NEXT $\mathbb{L}$

## Program Listing

10 POR $\mathrm{X}=1$ TO 50
20 PLOT $\mathrm{X}_{\text {。 }} 10$
30 NEXT X

## Program Listing

10 POR $\mathrm{Y}=1$ TO 25
20 PLOT 20』Y
30 NEXT $Y$

## 90 Box Message

Let's use low-resolution drawing abilities to create a box on the video display. First, type in this program to create a box. Again, we've added a never-ending loop at line 500 to freeze the picture. Press the BREAK key to end the run.

## Program Listing

10 FOR X=8 TO 17
20 PLOT X. 2
30 NEXT $\mathbb{X}$


## 99 Boxed Title

Here's a neat, different way to place a box around a program title-or anything else you might like to highlight.

Line 310 is a freeze-frame loop, used here so you can review your handywork.

## Program Listing

10 CLS

100 TPOR $Y=15$ TO 25 STMP 10
110 FPOR $\mathbb{X}=15 \quad \mathbb{T O} 37$
$120 \mathbb{P L O T}^{\mathbb{X}^{\prime}} \mathbf{Y}$
130 NEXT X
140 NEXT $Y$
200 FOR $X=15$ TO 37 STEP 22
210 FPOR $Y=15$ TO 25
220 PHOT $\mathrm{X}_{\theta} \mathrm{Y}$
230 NEXT $\mathbb{Y}$
240 NEXT X

310 GOTO 310

## 100 Draw Bar Graphs

Drawing graphs on the video screen are a popular form of communication today. This program establishes a bar graph on the TIMEX display.

We have selected the business-like example, shown here, to demonstrate how you go about setting up a bar graph on the TV screen.

Lines 10 to 80 are used to input data needed to be graphed. We have selected annual profits as the subject for our graph.

Line 10 asks for total profits in the year 1979; line 40 for 1980; etc. For the purposes of our graph, the maximum value you can enter will be 26. When the computer asks for the annual-profits data, give it numbers from 1 to 26.

Line 110 prints the heading.
Lines 200 to 240 create the first-year bar on the graph. Lines 300 to 340 create the second-year bar, and so on through line 440 which concludes the last-year bar on the graph.

## Program Listing



```
 5 0 ~ I N P P U T ~ B ~
 6 0 \text { CLSS}
 70 PRINT m1981 PROFITS"
 80 TNPUT C
 9 0 \text { CLS}
100 INTTT X$=mm
110 PRINT "TAB 9:"PROFITS"
200 PRINT ATP 3.\emptyset:"1979 w:
210 FPOR \mathbb{L}=1 HO \mathbb{A}
220 LEET X$=X$HCHR$ 128
230 NEXT In
240 PRINT X$
250 \mathbb{EETP X$=m}
300 PRINT 哌T 5,\:口"1980 "%
310 FFOR \mathbb{L}=1 TO B
320 LHET X$=X$#CHR$ 128
330 NEXTT I.
340 PRINT X$
350 LIETT X$=mm
```



```
410 FFOR \mathbb{N}=1 \mathbb{TO C}
420 IETT X$=X$HCHIR$ 128
430 NEXT \mathbb{H}
440 PRINT X$
```

Sample Run


## 101 Random Bar Graph

If you don't have any particular data to display, but would like to see how these bar graphs work, try this program.

It uses a random number generator in line 400 to provide data.

## Program Listing

| 10 | RAND |
| :---: | :---: |
| 20 | LuET $X \$={ }^{\text {w }}$ |
| 30 | PRINT "TAB 9: ${ }^{\text {TP }}$ PROFITS ${ }^{\text {T }}$ |
| 40 |  |
| 50 | GOSUB 400 |
| 60 | PRINT AT 5, $\mathbb{E}_{\text {a }}$ ¹979 |
| 70 | GOSUB 400 |
| 80 |  |
| 90 | GOSUB 400 |
| 100 | STOP |
| 400 | FOR $\mathbb{L}=1$ TTO INT ( $27 *$ RND) |
| 410 | IETI X\$=X\$+CHR\$ 128 |
| 420 | NEXT $\mathbb{L}$ |
| 430 | PRINT X\$ |
| 440 | LETP X\$=吅 |
| 450 | RETURN |

## Appendix

## Appendix A: Sinclair BASIC Words

Here is a convenient list, with short explanations, of each of the BASIC language words as used by Sinclair in the ZX-81 and in the TIMEX/Sinclair 1000 computer:

## Functions

| ABS | absolute value of a number |
| :---: | :---: |
| ACS | arccosine |
| AND | logical AND |
| ASN | arcsine |
| ATN | arctangent |
| CHR\$ | changes 0 to 255 number to a character |
| CODE | number of first character in a string |
| COS | cosine |
| EXP | exponent |
| INKEY\$ | scans keyboard |
| INT | integer part of number |
| LEN | length of a string |
| LN | natural logarithm |
| NOT | logical NOT |
| OR | logical OR |
| PEEK | look at one memory-address location |
| PI | 3.14159265 |
| RND | random-number generator |
| SGN | sign of a number |
| SIN | sine |
| SQR | square root |
| STR\$ | change numerical value to string |
| TAN | tangent |
| USR | call machine-language routine |
| VAL | change string to number |
| $+$ | addition of number or strings |
| - | subtraction |
| * | multiplication |
| 1 | division |
| ** | raising to a power |
| = | equals |
| > | greater than |
| $<$ | less than |
| >= | less than or equal to |
| $<=$ | greater than or equal to |
| <> | not equal to |

## Statements

| CLEAR | clears variables |
| :--- | :--- |
| CLS | clears screen |
| CONT | continue after STOP |
| COPY | copy TV screen on printer |
| DIM | dimensions numerical array |
| DIM \$ | dimensions string array |
| FAST | starts fast mode of TV display |
| FOR | first part of FOR/NEXT loop |
| GOSUB | jump to subroutine |
| GOTO | jump to a line |
| IF | first part of IF/THEN decision maker |
| INPUT | stops so data can be entered |
| LET | assigns a value to a variable |
| LIST | displays program list on TV screen |
| LLIST | displays program list on printer |
| LOAD | transfers program from tape into computer |
| LPRINT | PRINT on printer |
| NEW | erases all of program memory and variables |
| NEXT | last part of FOR/NEXT loop |
| PAUSE | holds TV display on for brief delay |
| PLOT | blacks in a graphics-screen dot |
| POKE | writes in one memory-address location |
| PRINT | displays on TV screen |
| RAND | reseeds random-number generator |
| REM | statement ignored during run |
| RETURN | end of GOSUB, jump back to main routine |
| RUN | clears variables and starts program action |
| SAVE | records program from computer onto tape |
| SCROLL | rolls TV display up a line |
| SLOW | switches to slower display mode |
| STEP | optional part of FOR/NEXT loop |
| STOP | temporary halt in a run |
| TAB | PRINT at a certain place on TV display |
| THEN | last part of IF/THEN decision maker |
| TO | follows FOR in FOR/NEXT loop |
| UNPLOT | blanks out a graphics-screen dot |

## Appendix B: Error Messages

This is a list of what Sinclair calls Report Codes and what you may refer to as error messages. These are notes to you from the computer about mistakes you may have made and about the status of the computer:

Code<br>Numberl<br>Letter

Description<br>of Error<br>or Status

0 successful completion
1 you have a NEXT without a matching FOR
2 you forgot to use LET or DIM or your FOR variable wrong

4 there's not enough memory space for what you want to do the TV screen is full you have computed too large a number you have a RETURN without a matching GOSUB
INPUT can only be used in a program line
9 CONT can't restart at STOP
A you are not using the function correctly
B an integer is out of range
C you can't VAL that string
D you used BREAK to interrupt a run or you are using STOP in an INPUT line
F there is no such program name

## books from ARCsofi Publishers

For the TRS-80 PC-1, PC-2, Sharp PC-1211, PC-1500:


## For the TRS-80 Color Computer:

101 Color Computer Programming Tips \& Tricks 128 pages | $\$ 7.95$ |
| :--- |$\quad$ ISBN 0-86668-007-1


55 MORE Color Computer Programs for Home, School \& Office
112 pages $\$ 9.95$ ISBN 0-86668-008-X
Color Computer Graphics
128 pages $\$ 9.95$

ISBN 0-86668-012-8
The Color Computer Songbook
96 pages $\$ 7.95$ ISBN 0-86668-011-X
My Buttons Are Blue and Other Love Poems
96 pages
$\$ 4.95$$\quad$ ISBN 0-86668-013-6

Color Computer BASIC Coding Form program worksheet tablets
40-sheet pad
\$2.95
ISBN 0-86668-802-1
For the APPLE Computer:
101 APPLE Computer Programming Tips \& Tricks $\begin{aligned} & \$ 8.95 \\ & 128 \text { pages } \\ & \text { ISBN 0-86668-015-2 }\end{aligned}$
33 New APPLE Computer Programs for Home, School \& Office
96 pages $\$ 8.95$ ISBN 0-86668-016-0
APPLE Computer BASIC Coding Form program worksheet tablets
40-sheet pad
\$2.95
ISBN 0-86668-803-X

For the ATARI 400 and 800 computers:
101 ATARI Computer Programming Tips \& Tricks
128 pages $\$ 8.95$
ISBN 0-86668-022-5
31 New ATARI Computer Programs for Home, School \& Office
96 pages
$\$ 8.95$
ISBN 0-86668-018-7
ATARI Computer BASIC Coding Form program worksheet tablets 40-sheet pad $\$ 2.95 \quad$ ISBN 0-86668-806-4

## books from ARCsoft Publishers

For the Sinclair $\mathbb{Z X}-81$ and TMMEX/Sinclair 1000 computers:
101 TIMEX 1000 and Sinclair ZX-81 Programming Tips \& Tricks 128 pages $\$ 7.95$ ..... ISBN 0-86668-020-9
37 TIMEX 1000 \& Sinclair ZX-81 Programs for Home, School \& Offfice 96 pages \$8.95 ISBN 0-86668-021-7
TIMEX 1000 \& Sinclair ZX-81 BASIC Coding Form program worksheets
40-sheet pad ..... \$2.95
ISBN 0-86668-807-2
For the electronics hobbyist:
25 Quick-N-Easy Electronics Projects 96 pages \$4.95 ISBN 0-86668-023-3
25 Electronics Projects for Beginners
96 pages ..... $\$ 4.95$ISBN 0-86668-017-9
25 Easy-To-Build One-Night \& Weekend Electronics Projects 96 pages $\$ 4.95$ ISBN 0-86668-010-1
Computer program-writing worksheets: Each in tablet of 40 sheets with stiff backing Universal BASIC Coding Form ..... $\$ 2.95$
IBM Personal Computer BASIC Coding Form ..... $\$ 2.95$
ATARI Computer BASIC Coding Form ..... \$2.95
Pocket Computer BASIC Coding Form ..... \$2.95
APPLE Computer BASIC Coding Form ..... \$2.95
Color Computer BASIC Coding Form ..... \$2.95
TIMEX 1000/Sinclair ZX-81 BASIC Form ..... \$2.95

ISBN: International Standard Book Number

# ARCsoft Publishers 

 Post Office Box 132 Woodsboro, Maryland 21798
## TIMEXISinclair Computer Book I

## 101 TIMEX 1000/Sinclair ZX-81 Programming Tips \& Tricks <br> by Edward Page

Here's a giant collection of practical, useful, efficient programming techniques and operating shortcuts right out of a master programmer's notebook. Loaded with hints, secrets, shortcuts, tips, tricks and easy-to-follow instructions, this book tells you how to handle routine programming chores more quickly, do special effects, make your TIMEX/Sinclair 1000 computer and Sinclair ZX-81 computer work for you.

Each of the 101 tips and tricks in this book features a complete, ready-to-type-and-run program which will work all by itself, or as part of a larger set of instructions. All 101 programs in this book have been thoroughly tested on the TIMEX/Sinclair 1000 and Sinclair ZX'-81 computers.

Learn insider's how-to secrets for using the exciting BASIC words FOR, NEXT, INKEY\$, OR, CHR\$, INT, LEN, PEEK, RND, STR\$, VAL, CLEAR, CLS, DIM, GOSUB, GOTO, IF, THEN, INPUT, LET, PAUSE, PLOT, PRINT, RAND, RETURN, UNPLOT and many more.

Sections in this book include Fun \& Games, Text On Text, Gee Whiz, Number Crunching, Money Matters, Graphics, and more. There's even a convenient list of all of the BASIC words and error messages used in the T/S 1000 and ZX-81.

Special techniques are here for graphics, searching, ordering, sorting, error trapping, secret messages, writing and playing games, batting averages, math flasher, ASCII character review, percentages, dollars \& cents, decision maker, random numbers, killing time, news ticker, invoicing, wages \& hours, passwords, and many, many more.

Programs in this book will run without modification on the TIMEX, Sinclair, MicroAce and other computers using the Sinclair version of the BASIC programming language. The programs also will run, with slight modification to some lines, on TRS-80 models I, II, III, 16, Color, PC-1, PC-2, Apple, Atari 400, 600, 800, Commodore Max Machine, VIC-20, 64, Pet, IBM Personal Computer, Sharp PC-1211, PC-1500, Panasonic, Quasar, Hewlett-Packard, and others.

## ARCsoft Publishers <br> WOODSBORO, MARYLAND

